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1. Introduction

Industrial firms in developed economies engage in increasing amounts of
organized research and development activity aimed at producing new and
improved products and reducing costs. Economists would like to know the
answers to two questions concerning the success (or failure) of this R&D
activity: First, what is the magnitude of the returns earned by the firms that
undertake it? Do these returns justify the investment being undertaken? Second,
to what extent do the benefits of the R&D spill over to other firms, thus
lowering their innovation costs, or to the firm's customers, through lower prices
and improved products? In brief, what are the private and social returns to the
R&D being performed. The standard approach to answering these questions is
grounded in the productivity residual methodology: we measure the contribution
of R&D to a firm's revenue or quantity of output, controlling for the other inputs
into production. The former measure (the marginal revenue elasticity) is the
relevant concept for the computation of private returns: it is the sum of the
contribution of R&D to the equilibrium price of quality-adjusted goods sold by
the firm and the contribution of R&D to the equilibrium quantity of qualiry-
adjusted goods sold. The latter measure (the output elasticity) is what martters
more for society as a whole: how the gains in productivity get allocated between
the firm and its customers is of secondary importance for growth, although the
allocation does affect the firm’s incentive to undertake R&D.

One way (o enrich our understanding of the sources and causes of
productivity levels and growth is by using cross-country, cross-industry, and
cross-time comparisons in order to isolate those features that are robust to
changes in time, place, and institutions. The differences or variations that emerge
from studies of this kind are also informarive, particularly when they are linked
to other known differences in the economic environment. A large number of
studies of the relationship between R&D investment and productivity growth at
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the firm level have been conducted in the past using data through 1980 (see
Mairesse and Sassenou, 1991, for a survey), but little has been done with the
increasing amount of data which became available during the 1980s in most of
the "big seven” OECD countries. This paper uses new datasets available in both
the U.S. (a dataset based on Compustar files that has been updated to 1990 and
then merged with deflators at the two-digit industry level)! and France (an R&D
survey at the firm level, also updated to 1990, merged with conventional
enterprise data on production)’ to investigate whether the small but well-
documented relationship between R&D and productivity growth at the firm level
persisted during the 1980s and whether it is similar in the USA and France.
While so doing, we distinguish somewhat more carefully than past studies
between revenue growth and productivity growth itself.

The style of analysis is based on the traditional growth framework and draws
on our experience with analyzing the French data for 1980-1987, which is
described in Hall and Mairesse (1992). Since the work described in that paper,
we have obtained a larger French sample and somewhat improved our deflators
(we are now using sales and value added deflators at the two-digit level).

The US data is of somewhat lower quality than the French data, particularly
since we do not have a measure of value added, nor do we have a reliable
measure of labour costs. In addition, we do not have the information necessary
to correct the capital and labour measures for R&D double counting as we do in
France. Here, comparison of results using the French data can help. From these
data we are able to gauge the changes which result when better measures of both
right-hand-side and left-hand-side variables are used. The evidence suggests that
estimates using sales instead of value added are not too badly biased, but that
attempting to correct for materials or including materials directly in the
regression can give misleading results. Correcting for double counting of R&D
employees tends to rais the R&D significantly, which is consistent with an earlier
work.

The plan of the paper is as follows: we first describe the data samples which
we are using, and characterise the overall similarities and differences of the
manufacturing sectors in the two countries. This is followed by a detailed
examination of the form of the productivity-R&D relationship using the French
data, where we have better variables. Once we have chosen a specification which
is feasible for the US data as well, we present comparative results for the two
countries. Since we find that the dating of our capital stocks (physical and R&D)

! See Hall (1990) for a description of a slightly eaclier version of the US datwa used
here.

The two sources are the Enguére annuelle sur les moyens consacrés & la recherche
et au développement dans les emtreprises, conducted by the French Ministry of
Research and Technology, and the Enquéte annuetle des entreprises, conducted by
INSEE.
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affects the within-firm estimates greatly (with end of period capitals having
higher coefficients than beginning period), the final section of the paper explores
the role of simultaneity in the relationship, and presents in details GMM
estimates of the relationship that are more efficient than conventional first
differenced estimators with lagged right-hand-side variables as instruments.

2. Samples, Framework, and Variables

Table 1 shows some of the characteristics of the samples with which we will be
working. In each case, we began with an unbalanced panel from 1981 to 1989,
with up to 3 years of lagged values for each variable (thar is, the actual data set
goes from 1978 to 1989, and no firm has less than 3 years of data). Later in the
paper we use two fully balanced subsets of data for each country. These subsets
contain data for shorter periods, 1978 to 1985, and 1982 to 1989.% The data
have been cleaned so that there are no jumps in the stock variables of absolute
value greater than 200 percent, or in the flow variables of absolute value greater
than 300 percent. Both samples cover a large fraction of the relevant population:
the US sample has 50 percent of manufacturing employment and about 67
percent of industrial R&D in 1985, whereas the French sample has about 22
percent of manufacturing employment and 56 percent of industrial R&D.* In
both cases, firms had to perform and report R&D during the period to be in the
sample, so there is some selectivity at work.

The samples for the two countries are fairly similar in industrial distribution.
The most striking differences are the large number of computing, electronics and
instrumeant firms in the United States, and pharmaceutical, chemical, food and
machinery firms in France. The balanced sampies used in the latter half of the
paper omit a large number of the Computing and Electronics firms in the USA,
many of whom are small recent entrants, and are somewhat more heavily
weighted toward the food and pharmaceutical industries in France.®

}  For the USA, the unbalanced panel has 1073 firms and the balanced subpanels 535
and 442 firms respectively, whereas for France, the numbers are 1232, 447, and 381.
There is a substantial overlap between the two different subperiods in each country;
this overlap is greater for France than for the USA.

*  According to the National Science Foundation, domestic R&D expenditure in 1985
was 58 billion dollars, while our sample had total R&D spending of 39 billion dollars.

3 According to the OECD, total R&D performed by business enterprises in France in
1985 was $6.04 billion dollars (using a purchasing power parity rate of 7.27 francs
per dollar to convert from francs to doilars), while our sampie has $3.37 billion
dollars of R&D.

¢ In both countries the aircraft and other transportation sector has an extremely high
R&D-to-sales ratio, and it has about 50 percent of the private enterprise-performed,
government-funded R&D. Because we believe that estimating the productivity of
R&D in this sector may be problematic due to fact that a primary customer is the go-
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TABLE 1
Unbalanced Sample Characteristics: French and US Manufacturing, 1981-1989
Industry Number  Number Employ- R&D-Sales
of Firms  of Obser- ment Ratio
vations (000s)

United States

Electronics, Computers, & Inst. 382 2254 2209 7.06
Pharmaceuticals 100 623 761 5.56
Chemicals 34 263 730 3.73
Autos 43 266 1668 3.23
Electrical Machinery 66 377 565 3.32
Machinery 135 899 832 2.59
Rubber & Plastics 36 204 279 2.16
Paper & Printing 41 264 395 2.02
Fabricated Metais 62 380 260 1.54
Wood, SCG, & Misc. 71 426 314 1.17
Primary Metals 27 162 195 1.12
Textiles & Leather 39 190 167 0.90
Food 37 213 879 0.95
Total 1073 6521 9254 2.93
Aircraft & other trans. 26 165 1074 3.60
France
Electronics, Computers, & Inst. 186 910 188.6 6.04
Pharmaceuticals 191 1081 83.4 2.92
Chemicals 119 540 65.0 1.54
Autos 62 312 247.8 1.48
Elecrrical Machinery 109 538 94.6 2.24
Machinery 192 933 73.6 1.17
Rubber & Plastics 62 322 63.9 2.69
Paper & Printing 32 123 10.2 0.49
Fabricated Metals 78 378 29.3 0.78
Wood, SCG, & Misc. 38 240 44.5 0.82
Primary Meuals 39 201 41.9 0.50
Textiles & Leather 38 202 13.6 0.82
Food 86 502 65.1 0.29
Total 1232 6282 1021.7 2.26
Aircraft & other trans. 32 195 93.7 9.41

Employment and R&D to sales are for the middle year of the sample, 1985. The R&D
to sales ratio shown is a sales-weighted average, which is the industry R&D to sales
ratio.
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The framework in which we measure the contribution of R&D to productivity
growth is a standard growth accounting one, based on the Cobb-Dougias
production function.” The basic equation is the following:

Y‘u = a! + )‘x + ac-:: + Blit + 7kix + Eiv. (1)

where i and t index firms and years respectively, y is output, ¢ is capital, 1 is
labour, k is knowledge or R&D capital, and the lower case letters denote
logarithms. The equation allows for both additive firm and year effects. In this
formulation, y denotes a value added output concept, since materials are not
included in the model. Although we have a measure of value added for the
French data, we do not have one for the US data. Therefore we present estimates
using both sales and value added, and also including materials for the French
data, so that we can calibrate the results using sales for comparison to the US
results. ,

Our measure of capital stock is a constructed estimate of plant and equipment
adjusted for inflation in both countries. Our measure of R&D capital is that
described as K71 in Hall and Mairesse (1995) for France and in Hall (1990) for
the USA. In both cases it is constructed from the past history of R&D
investment, with a depreciation rate of 15 percent per year and a pre-sample
growth rate of 5 percent per year. Our measure of labour is the number of
workers in the firm. This is usually reported by the firms as the average number
of workers during the year. In the United States, it may occasionally be the
number of workers at the close of the fiscal year.

Conceptually, the value added, labour, and capital measures used to estimate
equation (1) should be purged of the contribution of R&D materials, physical
capital used in R&D laboratories, and R&D personnel, since these inputs do not
produce current output, but are used to increase the stock of R&D capital. If this
is not done, the cross section estimates (or estimates from firms in long run
equilibrium where R&D spending does not change much from year to year) will
not necessarily be incorrect, but the measured R&D coefficient will be some kind
of "excess” elasticity of output to R&D rather than a total elasticity, i.e. the
incremental productivity of R&D above and beyond the normal productivity of
the capital and labour involved. In Hall and Mairesse (1992) we confirmed this
interpretation, finding that estimates corrected for R&D inputs tended to give
R&D elasticities which were 0.06-0.08 higher than uncorrected estimates (and
that most of the effect could be achieved by correcting the labour variables).

vernment, we have omirted it in the regressions that follow. In fact, removing it
changed the results very liale,
' For more details, see our earlier paper (Hall and Mairesse, 1995).
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Here we correct only value added and labour for the French darta, but we are
unable to do so for the US data, since we do not have the appropriate measures.

3. Comparing the Conventional Estimates for France and the United States

Table 2 presents a series of estimates of equation (1) for the French data. The
four horizontal panels have increasingly less restrictive assumptions on the error
term. The first is a regression pooled across firms and time, with individual year
dummies, while the second also allows. for industry effects (at the sectoral level
shown in table 1). The third and fourth allow for additive firm effects, first the
estimator with overall firm means removed, and then estimates in growth rates.
Except for simultaneity and measurement error bias in the right-hand-side
variables, these last two panels should have the same estimates. On the whole,
the two capital coefficients appear to be similarly insignificant, while the labour
coefficient is somewhat lower for the growth rate estimates, suggesting the
presence of measurement error.

The first column of the table shows the basic specification which we will also
use for the US data. The second column displays the same sales regression with
materials included on the right-hand-side, while the third uses value added
instead of sales. The average materials share in these data is sixty percent, so the
estimated coefficient is somewhat high, especially when permanent differences
across firms are controlled for. This is typical of these kinds of data and can
happen for two reasons: the measurement error bias can be less for materials
than for other inputs®, or there are shortrun increasing returns to materials.’

How do the estimates using sales in column (1) compare with those which
either include materials, or use value added as a dependent variable? If we
simply compare column (1) with column (3), we can see that the labour
coefficient is typically somewhat lower for sales, while the capital coefficient is
somewhat higher in the cross section dimension, but about the same and
insignificant in the within dimension. The estimates using sales and excluding
materials seem to give results for R&D capital that are quite similar to those
using value added. Unforwnately, they are also insignificant in the within-firm
dimension. Adding materials to the equation merely reduces the coefficients by
the estimated materials share, but their magnitudes are more or less what one
would predict from the value added equation. The conclusion is that the regres-
sion of sales on labour, capital, and knowledge capital is likely to give resulits
which are quite similar to those obtained using value added as a dependent va-

! Griliches and Hausman (1986).

®  Shortrun increasing returns can gccur for any of a number of reasons, most, but not
all, of them involving a failure of perfecdy competitive conditions. See R. E. Hall
(1988) for further discussion of this point.
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TABLE 2

Productivity Regressions 1981-1989, France (6282 observations)

Capital Dating Beginning of Year End of Year

Dep. Variable Log Sales Log Sales Log VA Log VAC Log VAC

Total

LogL S91(.017)  .193(.005) .699(.012) .630(.012) .597(.012)
Log C 295(.012) .043(.002) .193(.008) .183(.008) .210(.009)
Log K .090(.006) .024(.001) .092(.004) .165(.004) .172(.004)
Log M .735(.004)

R¥(s.e.) .868(.489) .993(.115) .926(.349) .923(.357) . .927(.347)
Within Ind.

Log L 681011 .201(.003) .749(.008) .679(.008) .645(.008)
Log C .204(.009) .038(.002) .153(.007) .141(.007) .168(.007)
Log K .109¢.006) .023(.002) .093(.004) .167(.004) .176(.004)
Log M .734(.003)

Ri(s.e.) .899(.429) .993(.112) .933(.333) .930(.340) .933(.332)
Within Firm

LogL B19(.013)  .199(.006) .900(.017) .841(.016) .790(.017)
Log C -.045(.013) .001(.005) -.036(.016) -.007(.015) .050(.016)
Log K .008(.011) -.010(.004) -.016(.013) .013(.013) .069(.014)
Log M .791(.005)

Ris.e.) 713(.143)  .956(.056) .597(.178) .602(.176) .606(.175)
First Diff.

Log L .645(.032) .154(.012) .715(.035) .666(.032) .606(.032)
Log C -.001(.007) -.002(.002) -.006(.008) -.003(.008) .130(.025)
Log K -.003¢.003) .000(.001) -.005(.003) -.004(.003) .080(.021)
LogM .793(.011)

Ri(s.e.) .256(.146) .878(.059) .192(.185) .182(.187) .190(.186)

All equations contain year dummies. The industry dummies used in the second panet
are at the level given in wble |. Variables:

Log L
Log C

Log K

Log M
Log Sales

Log VA
Log VAC

Logarithm of average employment during the year.

Logarithm of gross plant and equipment at the beginning or end of the
year, adjusted for inflation.

Logarithm of the R&D capital stock at the beginning or end of the year,
as computed in Hall and Mairesse (1995).

Logarithm of materials expenditures during the year.

Logarithm of sales during the year deflated by an overail manufacturing
deflator.

Logarithm of value added during the year.

Logarithm of value added during the year, corrected for R&D material
cost. In this column, Log L has also been corrected for the number of
R&D employees.
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riable (possibly with a slightly lower labour coefficient in all dimensions and a
slightly higher physical capital coefficient in the totals).

The final two columns of table 2 investigate two questions: first, what is the
effect of correcting labour and value added for R&D inputs, and second, what
are the differences in the estimates when we use end of year capitals rather than
beginning of year? The answer to the first question is that the double counting
corrections raise the R&D capital elasticity by about .07 in the cross section
dimension, .03 in the within dimension, and not at all in first differences. This
is entirely consistent with our earlier results (which use a smaller sample for
1980 10 1987) and those of Cuneo and Mairesse (1984) (which use data from
1972 to 1977), as well as those of Schankerman (1981) (which use US data in
the cross section dimension oaly).

Using end of year capital stocks rather than beginning of year raises the
capital coefficients slightly in the cross section, but it changes the results
dramatically in the time series dimension. The within-firm physical and R&D
capital coefficients both triple, and the first difference estimates go from
essentially zero to quite plausible numbers which are closer to the shares of both
capitals in value added. Why does this happen? Because the capital used in
production during the year is likely to be some weighted average of beginning
and end of year capital, it is difficult to know precisely which dating to use, but
either one ought to work about as welil (or as badly) unless something other than
a simple production relationship is driving the regression. Unfortunately, the
most likely explanation is simultaneity between changes in value added (or sales)
and investment of both types, driven either by demand shocks or liquidity
shocks. This is why we explore the use of instrumental variables to correct for
simuitaneity bias and reexamine this question later in the paper.'

Our explorations with the French data give us confidence that there is
information in the simple sales regression without materiais inputs, which is all
we can estimate using US data. We therefore present estimates of the sales
productivity regression for the United States in table 3, together with estimates
of the identical mode] for France (the first column repeated from table 2). We
use two different measures of sales as the dependent variable: sales deflated by
a single manufacturing sector deflator, and sales deflated by a two-digit level
deflator. The French cross section estimates are more or less comparable with
those of earlier periods, but the estimates within firm are lower: Cuneo and Mai-
resse (1984) obtain .11 for these estimates on a sampie of 182 firms from 1972
to 1977 (where the data are corrected for double counting, but they aiso show
that these corrections do not make much difference in within-firm estimates).
When we use a single common sales deflator for all industries, the results for the

'®  For general discussion of simuitaneity issues in estimating production functions. see
Griliches and Mairesse (1995).
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United States are sligntly weaker: where Griliches and Mairesse (1984) obtained
.05 in cross section and .09 within using 133 firms from 1966 to 1977, the
results here are about .04 both in the cross section and within firms. They also
agree with those of Hall (1993b), which were obtained using a superset of these
firms.

In contrast to these fairly weak results, using sales deflators at the two-digit
level (the columns labelled Log S (2-D)), raises the estimated R&D capital
coefficient in the United States substantiaily, from about 0.04 t0 0.25 in totals,
from 0.04 t0 0.17 in within firms, and from 0.01 to 0.09 in growth rates. For

TABLE 3

Productivity Regressions 1981-1989
Observations United States (6521) France (6282)
Dependent Variable Log Sales Log S (2-D) Log Sales Log S 2-D)
Totals
Log L .666(.010) 779¢.021) .591(.017) .578(.017)
Log C .289(.008) -.021(.018) .295(.013) .303(.012)
Log K .035(.005) .246(.012) .090(.006) .093(.006)
R¥(s.e.) .936(.360) .816(.349) .868(.489) .862(.499)
Within Ind.
Log L .712(.009) .707(.021) 681011 681(.011)
Log C .204(.008) .128(.019) .204(.009) .204(.009)
Log K .063(.005) 173(.013) .109(.006) .110(.006)
R¥s.e.) .967(.339) .837(.800) .899(.429) .898(.430)
Within Firm
Log L .742(.010) .702(.013) .819(.013) .828(.014)
Log C 126(.011) .142(.014) -.046(.013) -.052(.013)
Log K .041(.01D) .170(.014) .008(.011) 013¢.011)
R¥s.e.) .720(.145) .673(.193) 713(.143) .530(.145)
First Diff.
Log L .585(.019) .592(.020) .645(.032) .648(.032)
Log C .148¢.020) 171,021 -.001(.007) .001(.007)
Log K .010(.024) .092(.026) -.003(.003) -.003(.003)
Ri(s.e.) .416(.156) .402(.167) .256(.146) .249(.146)

The variables are the same as those in wable 2 with capital stocks at the beginning of the
year. All equations contain year dummies. The industary dummies are at the level given
in table 1. The standard error estimates for the towal and first differenced estimates are
heteroscedastic-consistent, those for the within industry and within firm estimates are
coaventional estimates.
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the French data there is no such increase. The reason for this is quite simple: the
United States deflator for the computing sector is based on a hedonic price index
for computers, and as a consequence it declines by about 80 percent during the
1980s as computer hardware becomes much more powerful and much less
expensive. Because this industry also has a growing R&D budget, this price
decline and the artendant growth in real output means that the estimated
contribution of R&D to the output productivity of this industry is very
substantial.!! However, in terms of sales undeflated or only deflated by our
overall deflator, the firms in this industry have not seen the same kind of
productivity gain, because consumers have captured most of the benefits in the
form of cheaper computers. In France, on the other hand, the computing deflator
is a more conventional measure that does not capture the tremendous decline in
the price of raw computing power, so deflation at the industry level does not
have the same effect on the estimated productivity of R&D.

A remaining mystery in our results is the within-firrn physical capital
coefficient for the French firms, which is negative, sometimes significantly so.
It is unclear why this is so: it was true throughout table 2 also, except in the last
column where we used end of year capital. This result contrasts with those of
Cuneo and Mairesse (1984) for the seventies and our own earlier results for
1980-1987. Understanding this puzzie awaits future work with the French data.

4. Trying to Correct for Simultaneity Bias with GMM

The sensitivity of our estimates to the dating of capital stock suggests that the
assumption of zero correlation between regressors and disturbances necessary for
the consistency of estimates is unlikely to be justified. We have already indicated
that this correlation can arise because of simultaneity between sales and both
types of investment. The failure of the non-correlation assumption in panel data
causes more problems than it does in conventional regression estimation, because
it frequently invalidates estimates based on data where firm means have been
removed, even when instrumental variable estimation is used to correct for
simultaneity.” This is because the only instruments normally available are

' Some of this gain may be mismeasured or even overstated, because important inputs
1o the computer indusuwy (semiconductors and computer components) have aiso
suffered substantial price declines during the same period, but these have not been
captured at all in our regression. These inputs are typically contained in the materials
input to the firm’s production at cost. When there are large price changes in these
inputs, the assumption for the purpose of production function estimation that the cost
of the omiaed materials and intermediate goods is a constant fraction of sales within
a firm, is more likely to fail.

2 Firm means are removed by subtracting y, = 8X, - « « ¢ from the model in
equation (2), leaving the equation to be estimated:

EWat
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lagged vatues of the right hand side variables and in short panels the correlation
of these variables with the disturbance remains after the firm-level means of the
dependent variable have been removed. The usual solution to this problem is
to use first differences (growth rates) for estimation rather than the within firm
correction. In addition to simultaneity bias, another source of bias likely to be
present is that arising from measurement error in all the variables; under a
variety of assumptions, this error tends to bias the first differenced coefficients
more towards zero than does the within-firm estimator (Griliches and Hausman,
1986). Thus it is desirable to develop within-firm estimators that remain
consistent even when lagged instruments are used.

Since earlier work with these kinds of data (Griliches and Mairesse, 1984),
a series of papers have been published which attempt to systematise the methods
for estimating and testing the validity of instrumental variable estimates of panei
data models where there may be simultaneity, measurement error, and effects
correlated with the regressors (Griliches and Hausman, 1986; Arellano and
Bond, 1991; Keene and Runkle, 1992; Schmidt, Ahn, and Wyhowski, 1992).
With the exception of Griliches and Hausman, who take a some what different
route, the approach followed in these papers is to set up a series of successively
stronger (more numerous) orthogonality conditions which are valid under various
versions of the panel data model and to use the results of Generalized Method
of Moments (GMM) estimation on these conditions to choose among the
specifications. The appeal of this method for panel data rests in the weakness of
the distributional assumptions necessary to carry it out: it does not require the
assumptions of zero covariance across years (except to the extenc that this is
necessary to validate the instruments), or homoscedasticity across firms for
efficiency.”® The standard error estimates which emerge from a GMM
estimation are also robust to the presence of correlation across equations and
heteroscedasticity. There is a cost to this flexibility of course, in the form of
somewhat larger standard errors, but this may be of less concern when we are
dealing with large panel datasets.

In this section of the paper, we use the GMM approach to panel data

}’,, - Y, = B (X" = ‘ti) * eu - E,
This removes the firm effect o but contaminates the disturbance ¢, with the
disturbances ¢ , ..., &y from the odher years of data.

13 Allowing for heteroskedasticity when estimating with heterogeneous groups of firms
is essential, if only because we cannot susain the assumption that the production
function we are estimating is identicai across firms. If instead of y, = Sx,, the modei
is ¥, = B, estimating an average 8 across firms will perforce inoduce a size-

related heteroskedasticity into the disturbance, of the form (8 - 8)x,. If the
variation in 8 is random across firms, no bias will ensue, but the standard errors will
be wrong unless we allow for this heteroskedasticity. If the variability is related to
the average level of x,, it will be absorbed in the fixed effect, and cause no bias.

11
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estimation in order to investigate the importance of correlated effects,
simuitaneity, and measurement error for our estimates. As instruments for
labour, capital, and R&D capital, we use these same variables lagged 3 years
and we test for the admissibilicy of more recent lags as instruments. Although
this choice of instruments will be justified if simultaneity is of concern, when the
source of bias is measurement error in the capitals, this measurement error is
likely to be correlated over time, and lagged capital not a very good instrument.
We investigated this possibility using investment and R&D expenditures as
instruments for the capital stocks but found that using these alternative
instruments made little difference and that we were able to accept the validity of
the capital stocks as instruments in the presence of investment and R&D
expenditures. To save space, the results of this investigation are not reported
here.

To make our approach clear, consider the simple regression model with a
single regressor, but with panel data:'

Vi = BXy + 4 = Bx + o + & i=1..,N t=7+1,..,T 2)

where there are r periods of data available as instruments for the first year of
estimation. J is the parameter of interest, and o; is the firm effect, potentially
correlated with x,, ¢ = 1,...,T. Our maintained model is that the effects are
correlated (so we have to difference the equation) and that only lag 3 and higher
x’s are available as instruments for x,, because later values are correlated with
&,." These assumptions imply the foilowing set of orthogonality conditions:

E [x, Ay =0 t=7+2,....T; s = L. t-71 3)

where Au, = Ay, - 84x, . There are (T-7-1)}(T-r)/2 orthogonality conditions in
3).

Estimation of (3) is performed using the method described in the Appendix.
Consistent estimates can be obtained simply by minimizing the sum of squares
of the empirical moments [f{8)] corresponding to (3) with respect to 3, but
efficiency requires that we also form an estimate of their covariance @ and

' Qur presentation from now on will suppress the presence of X, the time effect, in the
model. In estimation, we remove the year means from the data ac the very swart ©
avoid complications. This procedure has no effect on either the consistency or
efficiency of estimation in the case of a linear model with additive time dummies. In
fact, GMM estimates with time dummies excluded dnd year means removed are
numerically identical to those with time dummies inciuded (and a vector of ones
included in the instruments).

5 This choice is based on prior experience with firm daz (Hall, 1991; and Blundell,
Bond, Devereux, and Schiantareili, 1992). It errs on the side of caution and is, in
fact, not strictly necessary in these data, as we shall see.
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minimise in that metric. In large samples (asymptotically), the minimised statistic

fiB) @' f (B is distributed as a chi-squared random variable with degrees
of freedom equal to the number of orthogonality conditions in (3) less the
number of estimated parameters 3. As an example, suppose T is 8 and 7 is 3, as
in our data; then the number of orthogonality conditions (3) is (8-3-1)(8-3)/2 =
10. In our equation (2) example there is one 3, so that the degrees of freedom
will be 9. It can be shown that the set of moment conditions in (3) is equivalent
to that used in the instrumental variable estimation of the within estimator of (2)
where the firm-level means have been computed only over observations which
postdate any disturbance that might be correlated with the instruments. Both use
all the available information in the data.'s
We use (3) as our basic specification, with sales as the dependent variable
and labour, capital and R&D capital as the independent variables, and then test
for the additional moment restrictions implied by the validity of lag 2
instruments, lag 1 instruments, lag O instruments (weak exogeneity), and then by
using ail years as instruments for all equations (strong exogeneiry). We then
compare each of these specifications individually with specifications of the
following form:

E(x,u] =0 t=7+1,....,T: s = 1,..,t--1 4)

The moment conditions defined by equation (4) are appropriate if the
firm-level effects are not correlated with the x’s. In order for the procedure
outlined above to be valid and in order to guarantee a non-negative chi-squared
statistic for the tests, it is necessary to use an equivalent consistent estimate of {
for all the estimates; we ensure this by forming our estimate of the sample
covariance of the {x Au,} or {x,u,} using estimates of u, that are based on the
8s estimated using the weakest specification (that of equation (3) with only lag
3 and higher instruments).

A drawback to GMM estimation for panel data under the current state of the
art is that the results of asymptotic theory are somewhat incomplete when the
datasets are unbalanced. Conceptually, if there are a small number of patterns
of missing data, it would be possible to estimate the model separately for each
subset of firms which had data in a particular set of years, and then combine
these estimates optimally using their variance estimates as weights (see Bound,
Griliches, and Hail, 1986, for a discussion and demonstration of a similar
methodology applied to maximum likelihood estimation). Provided the number

6 Schmidt, Ahn, and Wyhowski show that there are additional moment restrictions
involving second moments of the disturbances available for estimation when their
variances do not change over time; we have not exploited these here because the
assumption of constant variances does not appear to hold in our daa.



J. Mairesse and B.H. Hall

of subsamples is fixed and the number of firms within each is allowed to grow,
it would be possible to obtain asymptotic results for such a method. However,
implementing this approach to estimation is extremely cumbersome, and we have
chosen a simpler solution here. We created two subsets of the data that are
balanced for subperiods within our overall period: the first is 1981-1985 (with
the years 1978, 1979, and 1980 available as instruments) and the second is
1985-1989 (with 1982-1984 available as instruments).

The results of our sequence of specification tests using these balanced panels
are shown in graphs { and 2 for France and graphs 3 and 4 for the United States
as nested x* graphs (see pages 19 to 22). Choosing the appropriate size for such
a sequence of tests is of course somewhat arbitrary; we have selected the one per
cent level of significance because of the fairly large number of tests conducted.
In both periods. (1981-1985 and 1985-1989), the absence of correlation between
firm effects and the instruments is clearly rejected in all cases for the French and
the US data, somewhat weakly for the United States in the first period. The US
data reject weak exogeneity in both periods in favour of lag |+ instruments.
This can be due either to simultaneity bias or to measurement error in the right
hand side variables. The picture for France is slightly more confused: in the first
period, the data accept the strong exogeneity of the right hand side variables,
while in the second strong exogeneity is rejected in favour of lag 0+ instruments
(weak exogeneity). We chose to use the weaker set of instruments for both
periods so that the results would be comparable.

In tables 4 and 5 we display the results of our preferred estimations using
GMM with lag 0+ instruments for France and lag | + instruments for the United
States (fifth column). For comparison, we also show the GMM estimates only
using the lag 3+ instruments (fourth column), and the conventional total and first
differsnced estimates of the production function. The latter is estimated with both
beginning and end of year capital stocks, and the former with beginning of year
stocks (three first columns). Note that since we are trying to correct for
simultaneity bias, our GMM estimates are performed on the specification with
the end of year capital stocks. The pattern of the estimates are roughly similar
across countries. Both countries have fairly large capital coefficients in the totals
which are very substantially reduced in the differenced estimates, especially
when beginning of year capital is used or capital is instrumented. As in the
results for the whole period, the coefficient of R&D capital is somewhat larger
in the rtotals for France than for the United States, but disappears or turns
negative in the first differences in the two countries. One interpretation could be
that firms which invest heavily in R&D have higher productivity growth on
average in the long run, but there is weaker evidence of a short run effect. Note
also that the physical capital coefficient in France has not been heiped by
obtaining estimates which correct for simultaneity; in the within-firm dimension,
it is still implausibly low, even negative, albeit somewhat poorly measured. This
is less true in the United States; correcting for simultaneicy bias lowers the

14
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physical capital coefficient only slightly, while wiping out the R&D capital
coefficient.

Despite the roughly similar pattern of our estimates, it is interesting to
indicate a possibly substantial difference between the two countries which may
help to explain why we were able to accept the weak exogeneity of the capitai
stocks for France, but not for the United States. As already said, the influence
of current sales on investment, either because sales signals future demand or
because of liquidity comsiderations, is a very likely source of simultaneity
berween end of year capital stocks and current year sales. In France, the
correlations of the growth rate of sales with that of investment and R&D are
0.21 and 0.12 respectively, while for the United States these numbers are Q.30
and 0.32. Thus this particuiar source of simuitaneity bias is potentially higher in
the United States than in France. It is tempting to speculate whether this
difference is due to a greater sensitivity to financial constraints in the US firms,
especially because the sample is drawn entirely from publicly traded enterprises
that may find it difficult (or expensive) to finance any investment, and
particularly investment in intangibles such as R&D, in the public equity or debt
markets. The French firms, on the other hand, may face somewhat softer budget
constraints, and the heavier involvement of the government in industrial R&D
may mitigate the effects of sales or eamnings flucruations. At the moment,
however, this is just speculation.

Finally, the substantive result emerging from tables 4 and 5 is that the
"excess” productivity of R&D is essentially zero in both periods in the United
States and France (and even passibly slightly negative in France). The former
result agrees with the finding in Hall (1993b) that, during the 1980s, the market
vaiue of the R&D investment undertaken by this sample of firms indicated that
no excess retuns were expected from such investment.

Looking now at our GMM estimates from an efficiency techaical point of
view, the bad news is that adding more moment conditions by using all the
available instruments leaves us with standard errors of our estimated coefficients
which are much larger than the (heteroskedastic consistent) standard errors of the
usual first differenced estimates (reported in column 3 or column 2). This is
particularly striking for the labour and ordinary capital coefficients, but much
less for the R-D capital coefficient. The first stage R-squares suggest why: the
growth of R&D capital is much more predictable from the past levels of capital
and ‘labour than is the growth of ordinary capital and the coefficient of this
variable is therefore somewhatr better measured than the others when we
instrument it."

7 These R-squares are the following: for France, .073, .295, and .531 for the growth
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TABLE 4

Estimates for the Balanced French Pancls, Dependent Variable: Log Sales

Independent Totals
Variable

First Dl

Firss Dilt.

GMM

FLE, 3+ Inst

GMM

FE, 0+ Inst.

GMM (1Vv)
I, O+ Inst.

v
FE, 0 Inst.

1981-1985: 447 Firms

Log L .548(.026)
Log C .307(.018)
LogK .103(.009)
sid err 487
xd.f.)

1985-1989: 381 Firms
log L .543(.026)
Log C ,356(.0)8)
Log K .078(.011)
std err 475
xXW.1)

.630(.061)

-028(.036)

.018(.036)
129

.752(.050)
-.066(.039)
-.132(.052)

.148

.573(.06%)
.152(.048)
2075(.035)

127

.700(.055)
.063(.042)
.034(.055)

149

1.213(.177)
-.124(.086)
-.085(.080)

35.5 21)
A425(.118)
O15(.112)

-.162(.102)

27.5 (21

1.049(.108)
-.081¢.061)
-.063(.041)

67.8 (63)
.467(.084)
.039(.066)

- 138(.044)

72.1 (63)

995(.125)
-.044(.067)
-.056(.045)

48.0 (45)
.445(.096)
-.010(.082)

-.105(.054)

51.3 45)

1.095(.204)
-.087(.090)
-.092(.062)

17.6 (9)
126(.160)
- 183(.118)
-.193(.077)

5709

The variables are the same as in table 2, with capital stocks at the beginning of year for the first two columns, and at the end of
year for the five last ones. All equations contain year dummies and industry dumimies at the level given in table 1.

eteroscedastic-consistent estimates of the standard errors are shown in parentheses.
The method of estimation in the first 3 columns is ordinary least squares. In the last 4 columns two-step GMM is used, The column
labelled 1V uses only those moment conditions that are implicd by the usual pooled IV estimator, while that labelled GMM(1V)
uses the samie moments, but imposes them for cach year of data separately. Sce the text for a deseription of the instruments.
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TABLE 5

Estimates for the Balanced US Panels, Dependent Variable: Log Sales

Independent Totals
Variable

First Ditf, First Diff. GMM

FE, 3+ Inst.

GMM

FE, 1+ lnst.

GMM (1V)
FE, 1+ Inst.

v

FE, 14 Inst.

1981-1985: 535 Firms

Log L .576(.015)
Log C .358(.012)
Log K .035(.007)
sid err 325
x(d.f)

1985-1989:; 442 Firmns
fogL .639(.015)
Log C J313(.015)
Log K .041(.008)
sid err 343
x(d.I)

.650(.028)  .555(.028) .877(.130)
.088(.027)  .190(.029) 218(.143)
027(.032)  .120(.035) .009(.102)
129 127
42.0 27)
.542(.030)  .423(.032) 317(.116)
138(.030)  .212(.035) 336(.130)
-.033(.040)  .147(.045) -.139(.091)
132 130
32.8 27)

897(.076)
.144(.090)
033(.061)

81.7 1)
.384(.076)
.172(.085)

-.039(.048)

61.2 (51)

.881(.093)
.126(.103)
.031(.067)

62.7 (33)
A489(.104)
.099(.109)
.006(.059)

49.7 (33)

1.26 (:22)
.012(.156)
-.062(.083)

10.8 (6)
.552(.160)
-.057(.163)
.069(.084)

21.1 (6)

See 1able 4 for precisions on the variables and methods of estimation.
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Tables 4 and 5 also reveal an interesting fact about the efficiency gain from
using GMM estimation for panel data rather than the conventional IV methods
with stacked data. The column before last in the tables gives the GMM
estimates (noted GMM (IV)) using as instruments only the lags 0 to 3 of the
variables (for France) or the lags 1 to 3 (for the US), while the last column gives
the standard IV estimates computed by using a GMM estimator only on the
moment conditions corresponding to the stacked model.'® All standard error
estimates shown are robust, computed using the estimated variance of the
orthogonality conditions from the modef with lag 3+ instruments only, and so
they can be directly compared. What is clear from the tables is that adding the
longer lags as instruments where available produces little or no efficiency gain
(because these additional lags are highly correlated with the instruments already
present), but that switching from IV to GMM comes close to halving the
standard errors. The reason is simple: GMM allows the projection on the
instruments to be different for every year, whereas IV constrains it to be the
same. In the traditional two stage least squares interpretation, GMM is using
many more predictor variables, which implies a better predictor for the
endogenous variables in finite samples, and hence smaller standard errors in
general. Which estimator is preferred depends somewhat on what we are willing
1o assume about the process generating our right-hand-side variables. Because
there is no reason to assume that it will be the same every year when we include
longer and longer lags as instruments, it seems plausible to allow the projection
coefficients to vary. We suspect that the case here is not atypical, and that the
efficiency gain from GMM in panel data is coming primarily from the different
year instruments and not simply from the additional lags. '

rates of labor, capical, and R&D capital in the first period, and .089, .221, and .543
in the second period. For the United States, the numbers are .03{, .107, and .444 for
the first period and .018, .058, and .451 for the second.

It can be shown that the IV moment condition corresponding to the orthogonality

b T hi
conditions {:’ (,®z)=0,¢=1.,T is & L (g, ® z) = 0.Thatis,
il (LI
the equivalent [V conditions just sum the relevant moment conditions over ail the
years in the panel. In the French case for example, there are 48 QCs in the second
to the iast column (= 4 years times 3 instruments times 4 lags). IV reduces this 10
12 (=3 instruments times 4 lags).
' Note, however, that the small sample biases may become severe with an increasing
number of instruments. See Bound, Jaeger and Baker (1993).
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GRAPH 1
Testing for Exogeneity and Correlated Firm Effects
447 French Manufacturing Firms 1981-1985
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GRAPH 2
Testing for Exogeneity and Correlated Firm Effects
381 French Manufacturing Firms 1985-1989
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GRAPH 3
Testing for Exogeneity and Correlated Firm Effects
535 U.S. Manufacturing Firms 1981-1985
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GRAPH 4
Testing for Exogeneity and Correlated Firm Effects
442 U.S. Manufacturing Firms 1985-1989
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5. Conclusions

In analysing the regressions presented in tables 2 through 5 and their many
variants, we have reached the following conclusions: 1) The R&D contribution
10 sales or productivity growth during the 1980s seems to be somewhat lower in
the 1980s than it was in the 1970s in both countries. 2) Using sales instead of
value added does not seriously bias the results, although attempting instead to
correct for materials inputs may. 3) The daring of the capital stocks makes a
huge difference 1o their estimated coefficients. All of the estimates shown in
table 2 are based on beginning of period stocks, and the end of period estimates
would be about half again as high. This suggested simultaneity between both
kinds of investment and sales (due to demand or liquidity shocks). Although this
explanation seems to hold for the United States, where we reject the exogeneity
of capital in the production function equation, it is less persuasive for France,
where contemporaneous instruments are accepted. We advanced the tentative
hypothesis that the difference in behaviour across countries is due to the fact that
liquidity constraints impact US R&D-doing firms more than French firms. 4)
Finally, the capital stock coefficient in the within firm estimates in France is zero
(or negative), which we regard as a puzzle, and possibly a warning about the
data.

With respect to the main substantive finding of this paper, we want to stress
the wwo following points. First, the measured R&D elasticity using data which
is not corrected for double counting ought 0 be zero if R&D investment is
earning a "normal” rate of return, comparable to that of other inputs. It is not
unlikely that this is the situation in the United States during the 1980s, when total
industrial R&D was not growing that quickly. Hall (1993a) finds that the stock
market valuation of the same firms’ R&D capital has failen by a factor of ¢
during the 1980s, which implies that the market has perhaps recognized the
relatively low private productivity of such investment.

Second, the results for the United States that use a sales measure deflated by
a two-digit level deflator and adjust to some extent for quality change are
suggestive: here we find a very substantial excess contribution of R&D to
productivity growth (0. 10 within firm). The implication is that R&D investment
has been very productive in increasing "true” output, but that most of the gains
have gone to the consumer in the form of lower prices. Because the price indices
for the United States are only partially corrected for quality change, and because
those for France have essentially no such correction, we regard this last finding
as an invitation for future research that attempts to focus on the quality as weil
as quantity of output.
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Appendix - GYIM Estimation for a Linear Panel Data Model with Fixed
Effects

A - General Methodology

The general methodology described here is based on that of Arellano and Bond
(1991), Arellano (1988), and Schmidt, Ahn and Wynkowski (1992). The authors
of these papers categorise the moment conditions implied by the use of linear
regression models with predetermined rather than exogenous right hand side
variables in a panel data setting and suggest estimating this type of model by
means of the generalized method of moments (GMM). GMM is appealing in this
setting because it is robust to heteroskedasticity across firms and correlation of
the disturbances within firms over time, and can be efficient under fairly weak
assumptions on the disturbances.

The most general model being considered is a random coefficients model with
correlated effects:

Yi =X + o + & i=1,.Nt1=1,..T
Yie = %8 + Vi T a; + & where v, = 3, - 8
The overall means of the data have been removed, so that we can assume

Efla] = 0 without loss of generality. The maintained stochastic assumptions are
the following:

Ele,] =0 Efe] = 7

Evj =0 Epi] =0}

Elee] = 0 for i/ and for all 4,5
Efvv] =0 for i#f

Efae] =0  foriwj

However, we do not necessarily wish to assume that Efelxy,..., Xof = 0.
If we define a new composite disturbance as

U, = vx, + o5 + g
and its first difference as
Au, = vadx, + Ag,
then the covariance matrix for Au,” = (Auy, Ay, , ..., Al IS

EfAu, Au' |x; ] = a28x Ax + E[AgAsg,’]
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where Ax; and Ag; have been defined analogously to Au;. Even without the
presence of the o, this covariance matrix is intrinsically heteroskedastic as well
as non-diagonal, once we allow for random coefficients. Thus we prefer GMM
estimation on the moments of ¥, or Ax, with lagged and current values of the x's;
which lags are chosen is a subject for exploration in the body of the paper.

Qur general procedure is to begin with a fairly weak assumption about
orthogonality berween the disturbance and the lagged right hand side variables,
such as orthogonality between x’s lagged three times and contemporaneous
disturbances, and then to add more recent lags until the additional restrictions are
rejected by a chi-squared test on the orthogonality conditions. To be more
precise, let all our moment conditions be defined as

Efu(8) ® 2] = 0

where
u(B) = [uy(B), un(B). ..., ux(B)] and w,(B) =y, - x B
Z = [Z; ..., i/ and m = number of instruments per year

The sample equivalents of these moment conditions are

Ul g .
TORFSWIRES METOLE

i el
The GMM estimator of 8 minimises the quantity

(B) = f (8) A f(B)

with respect to 3, where A is a positive definite symmetric matrix. If A can be
chosen as a consistent estimate of the inverse of the covariance matrix { of f(3),
this estimator will be consistent and asymptotically efficient. Even if A is
inconsistent, the estimates of 3 will be consistent under fairly general conditions
(Amemiya, 1977; Chamberlain, 1984; Hansen, 1982).

To estimate 2 and A consistently, we obtain estimates of 8 by a consistent
method for our maintained model (the one using the smallest number of
orthogonality conditions), and compute the estimated residuals based on these
B’s:

4=y, - X8 i=1,..Nje=1,..,T
The sample covariance of & ® gz, is then computed; note that it is necessary

in computing this covariance that the sample means of & @ z be removed,
because we do not assume that Efu; @ z/ = 0 for all moments of « and z under
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the maintained model. Alternative methods for obtaining estimates of Q and A
are discussed below.

When we implement this GMM estimator for panel data, the z; vector is the
entire list of potential instruments {(x;;, X3 , ..., Xr) and the %(8) are actually
Au(B), the set of equations for the disturbances in the first differenced version
of the maintained model. To test Efe, | xy, ..., Xiy] = 0, we add a set of
moment conditions of the form Efu,(B) ® zJ = 0 to the set of differenced
equations. This is equivalent to estimating the entire set of moment conditions
in levels, but in this form the maintained model is cleariy nested within the
model which does not have correlated effects.

Unitil now, the Kronecker product notation, familiar from the work of Hansen
(1982) and Hansen and Singleton (1982) has been used to simplify presentation.
However, this notation is not generally suitable for panel data, because each time
period ¢ has a different number of instruments availabie with which to form
orthogonality conditions. Our solution is to use a selection matrix on the original
complete set of moment conditions, so that those which are not valid for a
particular specification are not constrained to be zero. Define a kT by [ vector

N
S of zeroes and ones that selects the appropriate moments from lv Y ou®:
Y et

i

Then the solution to the problem

“‘J“ f(B) diag(S) A diag(S) fiB)

is equivalent to the GMM estimator based only on the moment conditions which
are valid under various exogeneity assumptions. Although these two estimators
of 3 are equivalent (both are consistent), they do not necessarily coincide, since
it is possible that the unused moment conditions will contribute covariance
elements to the estimated covariance of f{8), and these will appear in the
computation of A . One way around this particular problem is to use diag(S) in

the compuration of the covariance matrix itself. This is what is done here.

B - Actual Implementation

Our implementation of the different GMM estimators for our specific model is
very similar to that of Arellano and Bond (1991) and Blundell and Bond (1994),
although we have been using TSP rather than Gauss.

After differencing to remove the fixed effects, the model is the following:

Auiz = AYil - Axivﬂ
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The x’s are not necessarily strictly or even weakly exogenous. Firms index by
i =1[..,Nand years by ¢t = [,...,T, with T'-T years of presample data
available. There are instruments available (including lagged x’s) called z (m in
each year, t = T-T"+1,...,0,1,...,T). Define the following row vectors:

Ay, = (Auy, Aug, ..., Aty and z; = @, z?,..., z'™)

where
{(m) (m) (m) . (m) (m) (m
i = (Zirareats Zir-reeareeer Zior Zits o LT for all m.

There are mT” elements in z; and T elements in Au,. We begin by assuming that
all the z’s are valid instruments. Then the T’ orthogonality conditions for the
linear model specified above are the following:

fiB) = Ay, ® z

The GMM estimator minimizes ¢(3) with respect to 3 where

50 = [l gf.@] A [‘l\, éf.»(ﬁ)]

ini

Asymptotically efficient estimates are obtained when A = A4, the inverse of
the true covariance of the moment conditions, or when A4 is replaced with a
consistent estimator of A,,. The GMM procedure in TSP uses the inverse of the
sample covariance of the f(8), evaluated at a consistent estimator of
(specifically, that from three stage least squares). Other consistent estimators of
A can be computed if stronger assumptions are placed on the Au’s. We explore
some of these possibilities here.

The sample covariance of the j‘,. = A4, @ z, is given by the following
expression:"?

-1 | S t
Ay = — Lladad @ z,z;)

int

¥ As noted above, because the time series structure of panel data means that the

appropriate instruments are generally different for different time periods, in practice
we will use a selection matrix to select the relevant moments from this Kronecker
product.
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The above equation suggests several ways to estimate the weighting matrix for
GMM estimation:

(1) If the Ay; are independently and identically distributed over time and
across firms, then

plim [A,;‘ ] = oI, ® plim [E_I_z.]

Therefore, use

-l
N
(o3l

i=]

where & is based on an initial consistent estimate of 8 (e.g, two or three stage
least squares).

(2) If the A, are serially correlated, but identically distributed across firms,
then

plim (4] = T ® plim [_ﬁ where T = plim [Au Ad]

A2 =

Y

-1
£® 1y oz
®W2W]

fui

where £ is again based on an initial consistent estimate of 3.

(3) If the Ay, are independent across firms, but serially correlated and
heteroskedastic, use the full GMM weighting matrix (as in Hansen and
Singleton, 1982):

-1
hi
43 - [ %{z Az Az ® zz/ ]
inl

Estimates of 3 computed using these three estimates of Ay plus an estimate
simply equal to the identity matrix are shown in table A.l. Estimates of the
standard errors that are consistent even if A, is not equal to the covariance of the
orthogonality conditions are also shown in this table. Except for the identity
matrix case, there is little difference berween either the estimated coefficients or
the standard errors across different choices of Ay for these data. This contrasts
with findings reported in Blundeil and Bond (1995) and may reflect our relatively
large sample size.
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TABLE A.1
Different Estimates of Ay, Balanced US Panel: 1986-1989

Lag 3+ Lag 2+ Lag 1+ Lag 0+ Strong
Instruments Instruments Instruments (Weak Exog.) Exogeneity

AN = I
LogL -04 (30) 0.27 (.10) 0.39(.08) 0.46 (.07) 0.44 (.06)
Log C 0.78 (.38) 0.46 (.11) 032 (.09 0.25(.07) 0.39 (.06)
Log K -14(71) -09(08) -05(.05 -04(05) -08¢(.04)
Trace (DF) 354 27) 51.6 (39) 67.2(51) 103.2(63) 166.9(93)
P-value 0.128 0.085 0.064 0.001 0.000
Inst. Test (DF) - 16.1 (12) 15.6 (12) 36.0 (12)** 63.8 (30)**
A =Z (1, ®2 7
‘ N
Log L 041 (.11) 030 (.10) 0.41(.08) 046(07) 0.44(.06)
Log C 0.53 (.15) 0.39(.11) 0.29(.08) 0.24 (07) 0.33 (.06)
Log K - 11 (1) -.06 (08 -05(.05) -04(05) -.07 (.09
Trace (DF) 36.2 27) 51.2 (39) 66.8 (51) 103.5(63) 166.8(93)
P-value 0.11 0.09 0.068 0.001 0.000
Inst. Tes (DF) - 15.0 (12) 15.6 (12) 36.8 (12)** 63.2 (30)**
1
A2) =L ® _Z' Z
¥(2) v
Log L 0.43 (.10) 032 (.10) 0.42(.08) 047 (07) 0.41 (.06)
log C 0.42 (.12) 036 (.10) 0.28 (.08) 0.24 (.07) 0.33 (.06)
Log K -.10 (.08) -.05(08) -04 (05 -04(05 -07 (0%
Trace (DF) 39.6 @7 51.1 39 66.6 (51) (03.7(63) 166.7 (93)
P-value 0.056 0.092 0.070 0.001 0.000
Inst. Test (DF) - 16.1 (12) 15.5(12) 37.0 (12)** 63.1 (30)**
1 ¥ 4 !
A3 = — T [audy; @z 7]
N ia
Log L 0.33 (.10) 0.33(.10) 0.42(.08) 0.47(07) 0.44 (.06)
Log C 033 (.10) 034 (L10) 0.28(.08) 0.24 (.07) 0.33 (.06)
Log K 0.00 (.08) -.02 (.08 -.04 (.05) -.04 (.05) -.07 (.04)
Trace (DF) 32.8 27) 51.2 39) 66.6 (S1) 103.7 (63) 166.7 (93)
P-value 0.205 0.091 0.070 0.001 0.000
Inst. Tes (DF) - 18.5 (12) 15.4 (12)y 37.1 (12)** 63.0 (30)**
Notes: see next page
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Notes:

All suandard error estimates are robust to the presence of heteroskedasticity.

The row labelled "Inst. Test” is a chi-squared test for the validity of the additionai
instruments in the corresponding column, relative to the column on the lett. This test
swaatistic is distributed asymptotically as a chi-squared randaom variable with degrees of
treedom equal to the number of additional moment restrictions under the null that ail of
the moment restrictions used hold. ** denotes values of the statistic for which the p-value
is less then 0.01.
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