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Abstract
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1 Introduction

Governments around the world make widespread use of place-based policies that target resources

to specific regions. In the U.S., notable examples include the historical Tennessee Valley Authority

as well initiatives like Opportunity Zones, which provides tax breaks to incentivize private invest-

ment in economically distressed areas. The European Union Cohesion Policy allocates funds with

the goal of reducing regional disparities via a range of initiatives amounting to a third of the EU

budget. Another example is China’s Western Development Strategy, which aims at developing

western regions and reducing the economic gap with more prosperous coastal areas. An abundant

empirical literature has examined the effects of many different place-based policies (see for example

Neumark et al. (2015) and Ehrlich and Overman (2020) for reviews).

What does economic theory have to say about the rationale for such interventions? In this

chapter, we review recent theoretical analyses of policies that reallocate resources across space. We

examine how recent developments in spatial equilibrium models help to theoretically characterize

and quantitatively solve for optimal spatial policies. We discuss two main motives for government

intervention: efficiency and equity. Under the efficiency rationale, spatial policies aim at maximizing

national welfare. Under the equity rationale, spatial policies aim at reducing inequality in economic

outcomes.

Our general theoretical treatment of optimal policies is focused on implementing first-best taxes

and subsidies that vary across space. We also discuss optimal local investments, with a focus on

transportation. We use the term “spatial policies” to refer to these particular interventions. In

reality, place-based policies take a variety of forms. We exclude from our theoretical discussion

many specific policies that target geographic areas such as housing policies, zoning, local education

investments, or unemployment insurance. Our treatment also leaves aside a discussion of second-

best policies (i.e., to what extent can these policies come close to achieving an efficient allocation).

We first address the efficiency motive. Cities and regions serve as focal points for numerous

non-market interactions. The concentration of workers in specific areas generates agglomeration

spillovers that increase productivity, while the concentration of residents enhances local amenities,

like social networks and entertainment options. These spillovers are external to households, as

individuals do not internalize the broader effects of their location choices on others. As a result,

market allocations are typically inefficient, creating a justification for spatial policies to address

these externalities.

In section 2, we introduce a stylized model based on the Rosen-Roback framework with spillovers

to explain the core trade-offs and insights for efficient spatial policies. Section 3 extends the analysis

to more complex models, in particular quantitative spatial models, which incorporate additional

factors such as input-output linkages and heterogeneous worker types. This section also explains

how to take these theoretical frameworks to the data and quantify optimal spatial policies, and

illustrates these methods with an application to the distribution of economic activity in the U.S.

Section 4 shifts the focus to the equity motive for spatial policies. Many countries face signifi-

cant disparities in wages, incomes, and overall economic conditions between regions, with poverty
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often concentrated in specific areas. This concentration of poverty often motivates policy makers

to subsidize laggard regions. We analyze the optimal design of policies aimed at redistributing

resources to economically disadvantaged regions. Such policies are often suspected to be inefficient:

a commonly held view is that low-income people should be subsidized based on their income, ir-

respective of where they live. A central question addressed in section 4 is why, in contrast to this

view, place-based policies aimed at redistribution may fruitfully be used to complement traditional

income-based tools, such as income taxes.

We devote Section 5 to examining optimal transportation infrastructure investments as a par-

ticular type of spatial policy. Investments in transportation infrastructure are often central to

government policy discussions, and are likewise a major topic in the urban, regional, and trade

literatures. We treat investment in transportation infrastructure separately from other policies be-

cause of the distinctive mathematical tools and methods required to analyze investments in these

networks. The section discusses the role of transportation infrastructure in facilitating economic

integration across regions and quantifies the optimal level and distribution of such investments as

found in the literature. Section 6 concludes with a summary of areas of ongoing research.

2 Efficient Spatial Allocation

2.1 Introduction

A central topic in spatial economics is the role of agglomeration spillovers, which boost produc-

tivity in densely populated areas and drive the formation of cities. These spillovers may go hand

in hand with negative effects of density, such as traffic congestion and pollution. At its core, the

spatial equilibrium is characterized by numerous externalities. As a result, market outcomes may

be suboptimal, with some areas that are too large while others remain under-developed. This inef-

ficiency occurs because individuals do not internalize the spatial spillovers they generate when they

make location choices. In this context, policy intervention can be justified on efficiency grounds.

What is the optimal distribution of population across locations? How far from the efficient

allocation is the observed spatial equilibrium? What policies may achieve efficiency? This section

answers these questions through the lens of state-of-the-art frameworks in urban and spatial eco-

nomics. These canonical themes have been addressed by two classic strands of the literature. The

first, following Henderson (1974), assumes that land is infinitely abundant and (typically homo-

geneous) cities can enter freely, with each city able to choose its optimal size. A second strand,

following Flatters et al. (1974), considers a pre-existing set of heterogeneous locations producing

local public goods. Our treatment builds upon this second strand, having as a backdrop the re-

cent quantitative spatial models (QSE, see chapters by Allen and Arkolakis and Redding in this

handbook). The QSE literature grew out of spatial models with trade frictions such as Krugman

(1991) and especially, given modeling details, Helpman (1998). A country is partitioned into many

locations, each of which is the locus of various spatial externalities. Workers freely choose where

to live and work. The models are typically enriched to fit many margins observed in the data,
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such as input-output linkages and heterogeneous worker types. In this context, we consider a cen-

tral planner who may intervene in the market allocation to implement the efficient distribution of

population across locations.1

The treatment builds largely on Fajgelbaum and Gaubert (2020). Compared to previous presen-

tations of these topics, the main message emerging from this treatment is that the optimal allocation

can always be implemented with location-specific Pigouvian subsidies that can be expressed as a

function of only spillover elasticities and market outcomes, such as wages and expenditures, at

the optimal allocation. The same optimal policy formula holds regardless of many model features,

including the microfoundation for the spillover and whether the supply side is complex as in spatial

quantitative models or simpler as in earlier urban frameworks. As a result, numerically imple-

menting the optimal allocation and subsidies involves computing a specific model counterfactual in

response to a shock –a standard approach in the QSE literature– where the shock implements the

spatial subsidies prescribed by that optimal policy formula.

This section lays out the main logic and intuitions in a purposefully stylized framework –a

simple version of the Rosen-Roback model augmented with spatial spillovers. We discuss how

to characterize optimal spatial policies in this model and discuss their key properties. The next

section extends the analysis to cover various assumptions typically made in the QSE literature.

These extensions concern the structure of production (heterogeneous goods, input-output linkages,

costly trade); the nature and specification of spatial spillovers (spillovers coming from public good

provision, heterogeneous spillovers by groups of workers, spillovers that decay over space); and

the level of aggregation of the spatial model (regional model of cities, or urban model of locations

within cities). The next section also discusses how the optimal allocation and optimal policies can

be quantified in a realistic quantitative spatial model. It presents a step-by-step methodology and

illustrates some of the results using data on the distribution of economic activity in the U.S.

2.2 Baseline Model

2.2.1 Setup

Preferences and Technology The stylized framework in this section has the minimal ingre-

dients needed to discuss optimal spatial policies. Consider an economy with j = 1, .., J ex-ante

heterogeneous locations and L homogeneous workers. Each individual resides and works in the

same location. The utility of a resident of location j is

uj (cj , hj , Lj) , (1)

where cj is per-capita consumption of a freely traded commodity and hj is per-capita consump-

tion of housing, a non-tradable commodity. The utility function uj (· ) can be non-homothetic,

accommodating for example the fact that housing consumption has low income elasticity. Utility is

1Several excellent reviews of these topics include the handbook chapter by Abdel-Rahman and Anas (2004) on
efficiency issues in systems-of-cities models, the handbook chapter by Wildasin (1987) (and its extended version,
Wildasin, 1986a) on efficiency in the local public finance literature, and the books by Henderson (1977) and Fujita
(2013), which discuss efficiency in both approaches.
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indexed by location j to capture exogenous differences in amenities or quality of life in a location.

Thus, some locations are nicer to live in, all other variables equal. Finally, one’s preferences for

a location may also depend on local amenities that respond endogenously to local population. To

capture this notion formally, utility may depend directly on local population Lj , conditioning on

the previous variables.

On the production side, the aggregate supply of tradable output Yj (Nj) in location j is a

function of labor services Nj . It is indexed by location j as some locations may be more productive

for the same amount of labor services. Each worker supplies one unit of labor with productivity

zj (Lj), so a total of Nj (Lj) = zj (Lj)Lj efficiency units are available in location j. Through the

function zj(.), labor productivity may increase with the local density of economic activity. Finally,

housing supply is assumed fixed at an exogenous endowment Hj in location j.

The key driver of inefficiency in this model, which justifies policy intervention, is that the

location choice of a worker leads to spillovers on local economic activity. These spillovers are

typically not internalized in location decisions. Two types of spillovers are modeled: an amenity

spillover that directly impacts other workers’ utility through the Lj term in (1), and a productivity

spillover that impacts other workers’ output through the zj (Lj) term. These functions are left

general at this point; the chapter later discusses how various microfoundations used in the literature

map into this reduced-form formulation of the spatial spillovers.

Spatial Mobility Constraint Workers are perfectly mobile across space. Thus, in any feasible

allocation, there exists an economy-wide level of utility u such that:

uj ≤ u, (2)

with equality for all inhabited locations. The free-mobility constraint means that workers arbitrage

away spatial differences in welfare. It constitutes a natural benchmark to study efficiency in a spatial

equilibrium, especially when thinking about long-run policy objectives. However, this assumption

may seem unrealistic especially in the short run. One way forward would be to study spatial

policies in a dynamic model with moving frictions. Such models are developing in the literature

(Caliendo et al., 2019; Allen and Donaldson, 2020). Studying optimal policies in these contexts a

natural avenue for future research. Alternatively, a popular modeling approach in the literature

has been to capture mobility frictions while retaining a static model, by breaking away from the

assumption of homogeneous workers. These papers introduce heterogenous workers with different

idiosyncratic attachments to locations, so that aggregate mobility responses to shocks are limited.

Section 4 of this chapter discusses spatial policies in such environments and shows how they map

to the discussion here.

The free mobility condition (2) imposes a restriction on policy instruments: allocations where

identical agents experience different welfare are unfeasible.2 This restriction rules out equilibria

2Imposing this restriction on feasible allocations rules out the unequal treatment of equals. Incentives for such
unequal treatment of equals arise from the perspective of a planner maximizing a social welfare function (Mirrlees,
1972; Wildasin, 1986b), because utility is equalized across locations in the market equilibrium but marginal utilities
(of consumption of tradables) generically are not.
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with rationing where population size can be capped in a location.

Feasible Allocations A feasible allocation {cj , hj , Lj , Nj , u} satisfies the following constraints:

uj (cj , hj , Lj) = u if Lj > 0 (and ≤ u otherwise) (3)∑
j

cjLj ≤
∑
j

Yj (Nj) (4)

hjLj ≤ Hj (5)

Nj ≤ zj (Lj)Lj (6)∑
i

Lj = L (7)

In a non-wasteful allocation where all constraints bind, housing consumption per capita hj as

well as labor supply Nj are uniquely determined by local population Lj (equations (5) and (6)).

An equilibrium is therefore fully characterized by two margins: consumption of tradables cj and

population Lj . Furthermore, for a given level of welfare in the economy u, the free mobility

condition (3) ensures that the level of Lj pins down that of cj , and vice-versa. Feasible allocations

are therefore fully characterized by local consumption of traded goods. This local consumption

can be arbitrary, and in particular different from local production, so long as the aggregate market

for traded goods clears, i.e. (4) holds. Put differently, allocations are defined by a set of transfers

of tradable goods across locations. In particular, an optimal allocation will be characterized by a

specific set of transfers between places.

2.2.2 Market Allocation

In a decentralized equilibrium, each worker chooses location and consumption to maximize

utility, while perfectly competitive producers hire labor to maximize profits. Producers pay Wj

per efficiency unit of labor. Being atomistic, they do not internalize that worker’s productivity

responds to local employment Lj . Letting the tradable commodity be the numeraire, producers in

location j maximize profits ΠY
j = Yj (Nj)−WjNj , hence the wage per unit of labor is:

Wj = Y ′
j (Nj) . (8)

A worker in location j earns this wage per efficiency unit times her number of efficiency units zi,

themselves a function of population

wj = Wjzj (Lj) . (9)

Total unearned income in the economy includes the returns to housing and firm profits. The

endowment of housing is rented at the market rate Rj , so that the returns to housing in location

j are RjHj . All agents in the economy are assumed to be identical, hence they hold the same
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endowment of fixed factors. Per capita, the net returns to these fixed factors are:3

π ≡ 1

L

∑
j

ΠY
j +

1

L

∑
j

RjHj . (10)

A central government may put in place taxes and transfers on labor and non-labor income.

Such a policy is summarized in each location by a net per-capita subsidy sj . Conditional on living

in j, a worker earns after-tax income

xj ≡ wj + π + sj . (11)

The subsidy sj may be a function of market outcomes –for instance, it may depend on income.

When a policy redistributes only within each location (e.g., a local income tax rebated to local

workers), then sj = 0. In contrast, a non-trivial formulation of this policy entails transfers across

space. We refer to the set {sj} as a spatial policy. It must be revenue neutral, i.e.:∑
j

Ljsj = 0. (12)

Conditional on living in j, a worker obtains the following indirect utility

vj (xj , Rj , Lj) ≡max
cj ,hj

uj (cj , hj , Lj) s.t. cj +Rjhj = xj . (13)

By free mobility, worker resides in a location that yields maximum utility,

u = max
j

vj (xj , Rj , Lj) , (14)

and all populated locations deliver the maximum utility.

A competitive allocation –or spatial equilibrium– given sj is a set of quantities {cj , hj , Lj , Nj},
utility u and prices {wj , Rj} such that the allocation is feasible according to (3)-(7), firms optimize

(so wages are given by (9)) and the consumer solves (14)-(13).

2.2.3 Links to Well-Known Frameworks

In this model, two elasticities determine misallocation and optimal spatial policies: the produc-

tivity spillover εzj ,Lj and the amenity spillover εvj ,Lj , where we use εF,X ≡ ∂F
∂X

X
F to denote the

elasticity of F with respect to X. These elasticities capture welfare-relevant impacts of population

that are not internalized by market prices. The former captures the increase in labor productivity

caused by an increase in local population while the second captures the increase in indirect utility

of residents directly caused by an increase in local population. For normative purposes, the utility

spillover elasticity only matters up to the curvature of indirect utility, so the term we will often

encounter in calculations of optimal policy is
εvj,Lj

εvj,xj
. The normalization captures that monotone

transformations of utility functions are irrelevant for optimal allocations and have no empirical

counterpart.

The specific microfoundation of these functions varies across models. The environment set forth

3Some papers in the literature tie unearned income to location by assuming that fixed factors are locally owned; as
we discuss below, any such deviation from a national, commonly owned portfolio of fixed factors creates a distortion
to the allocation of population. We show below how adapt the analysis to that case.
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in the baseline model nests several classic frameworks, briefly reviewed here.

Neoclassical Models Neoclassical models as in Roback (1982) assume that both utility uj (· )
and labor productivity zj (.) are independent from Lj .

Systems-of-Cities Models in the tradition of the systems-of-cities literature following Henderson

(1974) are based on the monocentric city model. Cities combine a positive external agglomeration

force and a (typically non-external) congestion force, leading to a inverted U-shape relationship

between city-level utility and local population. In a common model variant, efficiency units are

Nj = LγZ
j hj (Lj), where LγZ

j is a positive productivity spillover. At the same time, productive

hours per capita hj (Lj) decrease with city size: as cities grow, they expand geographically to

host increasing population, the average commute is longer, and average workers’ productive hours

decrease. Because land is commonly owned among the population of a city, this reduction in

productive hours is not fully internalized and acts as a negative externality.4 On net, a city’s

output displays an inverted-U shape with its population Lj , increasing with agglomeration effects

at a small scale, but decreasing as congestion ends up dominating at a larger scale (Abdel-Rahman

and Anas, 2004). With a fixed number of cities, this setup maps into the one discussed here.

However, different from our focus, models of systems-of-cities typically consider an infinite supply

of potential city sites, and are concerned with the endogenous number of cities in equilibrium for

different governance structures.

Local Public Finance In the local public finance literature, the source of spatial spillovers is

public-goods provision, where local public goods are provided by local governments. For instance,

Flatters et al. (1974) assume the utility function ũj (cj , hj , g (Gj , Lj)) where Gj is local public

spending (produced 1-1 from tradable goods) and g (Gj , Lj) are the resulting public services pro-

vided to each resident. Congestion or non-rivalry of public-service provision enters through the

shape of g (Gj , Lj). The discussion of efficiency in this section goes through unchanged in this

case by defining uj (cj , hj , Lj) = ũj (cj , hj , g (Gj , Lj)), where the (possibly socially inefficient) dis-

tribution of Gj is taken as given. In this case, the central government finances spending on public

goods.5 A more complete treatment of this case, however, requires taking into account that Gj may

be financed by local governments through local taxes rather than by a central planner, a theme

discussed in section 3.2.

New Economic Geography In new economic geography models (Krugman, 1991; Helpman,

1998), the standard microfoundation for spillovers is that larger cities host a greater variety of

producers of goods that can be only locally consumed or used as intermediate inputs. In the

presence of love-of-variety in consumption or production, entry of more producers in larger cities

generates spillovers. Formally, differentiated inputs (or final goods) are combined in these models

4When the city is circular, this process leads to hj (Lj) = 1− kL
1/2
j for some constant k.

5I.e., (12) is replaced by
∑

j Ljsj (·) =
∑

Gj .
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using a Constant Elasticity of Substitution function, with elasticity of substitution σ. As noted

by Abdel-Rahman and Fujita (1990) this microfoundation generates productivity (respectively,

amenity) spillovers that have constant elasticity εzj ,Lj = 1
σ−1 in the case of intermediate inputs

(respectively,
εvj,Lj

εvj,xj
= 1

σ−1 in the case of final goods).

Quantitative Spatial Economics Quantitative spatial models (Redding and Rossi-Hansberg,

2017) typically assume spillovers similar to those in the New Economic Geography literature de-

scribed earlier, or use reduced-form spillovers without specifying their microfoundations. Spillovers

are assumed to have constant elasticity, both as a function of location (they are independent from

j) and as a function of population (their elasticity is independent from Lj). On the production side,

reduced-form spillovers z (Lj) represent classic Marshallian economies of density such as knowledge

spillovers, enhanced access to consumers and suppliers, or labor pooling. On the utility side, work-

ers derive utility from amenities in the place where they live, usually parametrized in multiplicative

form: uj = aj (Lj) ũ (cj , hj). Amenity spillovers may be positive, driven by economies of density

in amenities (e.g. diversity in entertainment options and restaurants) or negative, driven by the

additional pollution and traffic generated by higher density. Finally, these models assume that pref-

erences are homothetic, so that εvj ,xj = 1. Given that these assumptions are both tractable and

widespread, we will use them repeatedly to illustrate the analysis, based on the following example:

Example 1. Spillover Elasticities are constant both across space and as a function of population

size, εzj ,Lj = γZ and
εvj,Lj

εvj,xj
= γA.

2.3 Welfare-increasing Reallocations

This section takes a small perturbation approach to characterize reallocations that increase

welfare in the baseline model. We derive a condition that determines when an allocation is efficient.

Using that condition we characterize several properties of the equilibrium.

2.3.1 What Places Should Be Subsidized in an Observed Allocation?

Starting at a spatial equilibrium of the economy, we consider a small reallocation of workers

between locations {dLj}, while keeping total population constant. To a first-order approximation,

such a reallocation leads to a change in aggregate welfare of

du

χ
=
∑
j

(Γj − xj + wj) dLj , (15)

where

Γj ≡ εzj ,Ljwj +
εvj ,Lj

εvj ,xj

xj (16)

and where

χ ≡

∑
j

Lj

(
∂vj
∂xj

)−1
−1

. (17)
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The term Γj captures, in money-equivalent terms, the spillover effect of adding a worker to

location j. The term χ is the average marginal utility of expenditure in the economy. So, du
dχ is

interpreted as an aggregate equivalent variation, i.e., an increase in income such that, if properly

allocated across regions while keeping initial location and prices fixed, leaves the country indifferent

with experiencing the labor reallocation.6

The formal derivation of (15) is given in the Appendix. Intuitively, the term Γj − xj + wj

measures the social welfare impact of an additional worker in location j. The marginal worker in j

increases production, both directly through that worker’s labor (as measured by wj) and indirectly

through productivity spillovers that benefit incumbent workers (as measured by εzj ,Ljwj), so that

the social marginal product of labor is
dYj

dLj
=
(
1 + εzj ,Lj

)
wj .

7 A marginal worker also generates

utility spillovers on incumbent workers equal to
εvj,Lj

εvj,xj
xj per worker when measured in consumption-

equivalent terms. At the same time, an additional worker in j takes up local resources (the worker’s

own consumption xj). Summing these terms gives the marginal welfare effect of adding a worker

to location j, and summing over all cities for a given reallocation {dLj} yields (15).

Noting that xj − wj = sj + π, it follows that a reallocation of workers from location i to j

(keeping population in all other locations constant) would raise aggregate welfare u if and only if:

Γj − sj > Γi − si. (18)

So long as this condition holds in a market allocation, a worker has a larger welfare impact in

location j than in i, and location j should grow. This can be achieved by increasing subsidies given

to inhabitants of j while reducing i’s.

What locations in a given market allocation are too small and should be subsidized? Naturally,

everything else the same, locations with more positive (negative) spillovers should be subsidized

(taxed). Beyond this observation, (18) provides a first answer to this question as well as an

approach to implement welfare-increasing policies, because it depends on variables that are typically

observable (wages and expenditures) as well as on elasticities that can a priori be measured. Ranking

locations according to their observed Γj − sj in (16) helps establish priority to receive further

subsidies. For a given (small) amount of subsidies to distribute, welfare will improve if a city

higher up in this ranking gets more extra subsidy than one ranked below. A ranking of these cities

therefore provides a preliminary measure of “bang-for-the-buck” from implementing subsidies in

the observed allocation.

Measuring returns to spatial policies in this way is an inherently “local” exercise concerning

small changes compared to the observed equilibrium. An advantage of such an approach is that it

relies on elasticities that hold in the current equilibrium and are a priori measurable. It does not

require further assumptions on how the equilibrium behaves far away from the observed allocation.

6Utility changes measured by du depend on unobservable monotone transformations of u entering through
∂vj
∂xj

;

however, du
dχ

is independent from those transformations. More specifically, du
dχ

=
∑

Lievi where evi is such that that,
around an initial equilibrium, a resident of i is indifferent between receiving an extra evi in income and continuing
to live in location i at the initial prices, or experiencing the shock du caused by a counterfactual.

7The number of workers impacted by the spillovers Lj does not explicitly enter this expression because spillovers
are expressed as elasticities (% terms, rather than levels).
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However, on the flip side, these subsidies do not necessarily align with subsidies that would yield the

globally optimal allocation. Any change in transfers starting at an inefficient allocation potentially

changes the ranking of locations. In the next subsection, with further assumptions, we characterize

optimal transfers that implement the globally efficient allocation. And in the next section we

illustrate both this first-order and exact approaches to quantifying optimal policies.

2.3.2 Laissez-Faire Allocation: When is it Efficient?

Condition (18) reveals that the market allocation is generically inefficient except in knife-edge

cases. One such case is the laissez-faire equilibrium, a standard benchmark. As it features no

transfers, meaning sj = 0 everywhere, (18) implies this allocation is efficient if the money-equivalent

value of the spillovers Γj is the same everywhere. As we would expect, this is the case when

there are no spillovers, εzj ,Lj = εvj ,Lj = 0, as in neoclassical frameworks such as Roback (1982).

Unsurprisingly, the neoclassical spatial equilibrium without distortions is efficient.

More generally, condition (18) also reveals that the market allocation is efficient when utility

and efficiency spillovers are constant and exactly compensate each other. To see why, assume there

are constant-elasticity spillovers (Example 1). Starting again from sj = 0 (laissez-faire), we have

xj = wj + π and condition (18) implies gains from reallocation from i to j as long as:

(γA + γZ) (wj − wi) > 0. (19)

Wage differences (wj ̸= wi) is the typical outcome due to compensating differentials. Therefore,

generically, there are gains from reallocating workers in space when spillovers have constant elastic-

ity (a point we return to in the next subsection). However, in the knife-edge case with γA+γZ = 0,

amenity and efficiency spillovers exactly cancel out, leading to efficiency (a point noted by Allen

and Arkolakis (2014)).8

2.3.3 Inefficiency of Laissez-Faire under Constant-Elasticity Spillovers

We just proved that the laissez-faire allocation is generically inefficient. This is the case even

when spillovers have constant elasticity. The critical factor for policy is the money equivalent value

of the spillover, Γj , which varies across locations even when the elasticities are constant. This

result stands against a prior in the place-based policy literature, according to which the case with

constant-elasticity spillovers is efficient, and therefore policy intervention is justified only if spillover

elasticities are heterogeneous across space. Such is the conclusion in Glaeser and Gottlieb (2008)

and Kline and Moretti (2014), echoed in Neumark et al. (2015) and Duranton and Venables (2018).

In these papers, this conclusion arises because they study the welfare impacts of labor reallocations

while assuming zero transfers. However, transfers (which create imbalances between the production

8These results may seem counterintuitive in the light of how optimal industrial policies look like under sector-
level external effects. As shown for example by Bartelme et al. (2019), when spillovers are common across sectors
there are no incentives to subsidize sectors; whereas here a constant spillover in space still leads to incentives for
location-specific subsidies.
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and consumption of tradeables), are essential for incentivizing spatial reallocations when there is

free labor mobility.

More specifically, assuming away transfers is problematic for three reasons. First, without

transfers, only one allocation –the market allocation– is consistent with free labor mobility. Any al-

ternative allocation would involve differences in utility across space, conflicting with the concept of

free mobility; put in another way, any other zero-transfer allocation would require forced migration.

Second, transfers enable Pareto improvements (regardless of whether labor mobility is free or con-

strained by forced migrations). Thus, if transfers are allowed, the zero-transfers market allocation

is inefficient. Third, typical place-based policies –such as wage subsidies implemented by a federal

government– involve payment imbalances across regions, with some regions as net contributors and

others as net beneficiaries. Therefore, transfers are necessary to think about these policies. In

sum, the result that the allocation is inefficient under constant-elasticity spillovers differs from this

previous research because our analysis accounts for transfers and for their effects on welfare and

mobility.

2.3.4 Inefficiency from Local Ownership

Consider a model without spillovers but with local ownership of fixed factors. In this vein,

Caliendo et al. (2018) assume that a fraction ω of the returns to local factors accrue to local

residents while Redding (2016) assume full local ownership (ω = 1). Full local ownership is also

a standard assumption in systems-of-cities models (Abdel-Rahman and Anas, 2004). Formally,

denote πj the local returns to fixed factors relative to population of j, such that in the laissez-faire

allocation:

xj = wj + ωπj + (1− ω)π. (20)

Given condition (16), in the absence of spillovers (Γj = 0 ∀j), there are gains from reallocation

in this economy: condition (18) becomes −xj + wj > −xi + wi, which holds whenever πi > πj .

This result means it is desirable to reallocate workers towards locations with lower returns to fixed

factors. This reallocation occurs through transfers intending to restore the common-ownership

assumption, which corresponds to ω = 0. Hence, the assumption on local ownership of fixed factors

creates a distortion that gives incorrect signals to individuals who choose a location. Location

choices become tied to not just marginal contributions to net social benefits, but also to high rents

per se. This process results in high-rents regions being too large.

2.3.5 Laissez-Faire Allocation: When are Large Cities too Large?

A natural question in the context of optimal spatial population is whether larger or smaller cities

in a free market allocation are undersized. Intuitively, the answer to this question must depend

on the signs of spillovers and the distribution of fundamentals. We can answer this question by

applying (18) to the free market allocation. Whether larger cities should grow depends on whether

they are per-capita rich (in wages or in expenditures) and on the sign and intensity of their spillover
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elasticities. Said another way, once we know the sign and intensity of spillover elasticities, we need

to determine if larger cities are richer to determine if they are too small or too large.

For ease of exposition, imagine a case of our model without housing in consumption. We

also assume constant-elasticity spillovers (Example 1) as well as a constant-elasticity production

function for tradables Yj (Nj). Cities with better exogenous components of efficiency (a shifter

of Yj) or amenities (a shifter of vj) are larger under standard conditions that guarantee a unique

interior solution. Alongside the spillover elasticities, a key parameter in this model is εY,N < 1, the

curvature of the production function with respect to efficiency units. Larger cities pay lower wages

whenever (1 + εz,L) εY,N < 1; in this case, efficiency spillovers εz,L are weaker than decreasing

returns to scale in production. At the same time, as implied by (19), low-wage cities should grow

whenever net spillovers are negative (γZ + γA < 0).

Table 1 answers whether large cities are too large or too small in the free market allocation in

different parameter regions. Large cities are too small only when efficiency spillovers γZ are either

too large or too small. When the agglomeration spillover γZ is small, larger cities pay lower wages

and net agglomeration is negative, indicating that these cities should grow. Symmetrically, when

γZ is large, larger cities pay higher wages and net agglomeration is positive, indicating that these

cities should grow. In the right column of the table, large cities are high wage, implying an urban

wage premium in the free market allocation. In this case, large cities are too small if and only if

spillovers are net agglomerative (γZ + γA > 0).

Table 1: Are Large Cities Too Large or Too Small in the Laissez-Faire Allocation?

(1 + γZ) εY,N < 1 (1 + γZ) εY,N > 1

γZ + γA < 0 Too small (and low wage) Too large (and high wage)

γZ + γA > 0 Too large (and low wage) Too small (and high wage)

Note: Each entry of the table states whether, in a pairwise comparison of two cities in a free-market allocation, the

larger city is too small (hence it should grow at the expense of the smaller city for aggregate welfare to increase) or

too large. The table also notes whether the lager city is lower- or higher-wage in the observed allocation given the

region of the parameter space.

2.4 Efficient Allocation

This section characterizes an efficient allocation and the spatial policies that may implement it.

2.4.1 Optimal Spatial Policies

If the equilibrium is efficient, then no reallocation of existing population should have a first-

order impact on welfare. Therefore, condition (18) must hold with equality for any pair of locations.

Using the definition of Γj , it follows that the subsidies that implement the optimal allocation must

12



satisfy:9

s∗j = εzj ,Ljwj +
εvj ,Lj

εvj ,xj

xj︸ ︷︷ ︸
Γj

−Γ (21)

where, using (12), the constant Γ equals the population-weighted average spillovers Γj :

Γ =
∑
j

(
Lj

L

)
εzj ,Ljwj +

∑
j

(
Lj

L

)
εvj ,Lj

εvj ,xj

xj .

The optimal transfer is a standard Pigouvian correction and it can be interpreted in terms of

marginal costs and benefits of allocating workers to a given location. By definition, the subsidy s∗j
is the fiscal cost for the government of adding a worker to location j. The part of the social benefit

generated by this worker in j that is not internalized by the market includes the efficiency spillover

εzj ,Ljwj and the amenity spillover
εvj,Lj

εvj,xj
xj . If the worker does not locate in j, she still generates

spillovers on the economy (the average Γ). At the optimal equilibrium, the cost of the subsidy s∗j
equals the net benefit of locating a marginal worker in j, net of the opportunity cost of locating the

worker elsewhere, captured by Γ. Locations receive greater subsidies if their spillovers are greater

than the average in the economy.

Constant Elasticity Spillovers Simple policy rules obtain in the special case of Example

(1). Combining (21) with (11), the optimal subsidies take the form:

s∗j =
γZ + γA
1− γA

(wj − w) , (22)

where w is a population-weighted average of wages. The optimal allocation is implemented by a

subsidy that is proportional to labor earnings, with constant proportion γZ+γA
1−γA

minus a lump-sum

tax γZ+γA
1−γA

w paid in all locations. To fix ideas, assume negative amenity spillovers (γA < 0), so

that higher population creates congestion. So long as the productivity spillover is not too strong

(γZ < −γA), this subsidy scheme implies that richer cities, with above average wage, pay a tax while

poorer cities receive a subsidy. The intuition for this result is that the (negative) utility spillover

increases with local consumption at a rate γA. Because in this example consumption increases one-

to-one with wages, net spillovers are proportional to wages, with a negative coefficient. High-wage

cities have the most negative spillovers, and should shrink.

Optimal Labor Demand Subsidies The optimal allocation can be implemented both via

labor supply subsidies, such as those we characterized ,or labor demand subsidies received by firms.

In the context of Example 1, a labor demand subsidy per worker shj means that, for firms, the cost

of each worker falls from wj to wj −shj . Replicating the steps leading up to (22), the optimal hiring

subsidy is:

sh∗j =
1− γA
1 + γZ

s∗j . (23)

9These conditions are not generically sufficient to guarantee an efficient allocation, as it could be that with such
subsidies, multiple equilibria exist.
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An optimal hiring subsidy shares the same qualitative features as a direct individual transfer (22),

although the overall level of the rate may be different.

Other Distortions to Population Allocation In the model, there are no distortions other

than those caused by the spillovers. However, the analysis readily accommodates any distortion

that only affects the allocation of population. For instance, if workers face a per-capita tax µj in j,

perhaps put in place by a local government, the optimal subsidy would obviously be s∗j +µj for the

same s∗j defined in (21). Another example stems from the particular form of spatial misallocation

that arises if one assume local ownership of fixed factors as described above. This type of distortion

can be represented by a pseudo-tax µj = ωj (π − πj) faced by individuals in their location decisions.

This pseudo-tax can be again readily added to the current analysis. The optimal policy, in addition

to correcting the spillovers, also corrects the distortion caused by local ownership and becomes:

s∗j = Γj + ωj (π − πj)− Γ. (24)

The policy calls for less subsidies (or more taxes), all else equal, in locations where the returns to

fixed factors are high. The optimal policy restores the right incentives for location choices, based

on real economic returns. Rich locations that are inefficiently large shrink.

2.4.2 Link to Henry George Theorem and Implementation with Land Taxes

A long-standing result in the urban and local public finance literature is the Henry George

Theorem (HGT). One way to state this theorem is that, in an economy with spillovers, fully taxing

the fixed factor and redistributing the proceeds to local workers exactly allows to reach efficient city

size. Put more technically, the value of spillovers at the optimal allocation is equal to the returns to

the fixed factor. This result is typically derived for one location in isolation, assuming that a local

planner freely chooses the local population to maximize utility per worker of residents, as in the

setup of Henderson (1974). Arnott (2004), Abdel-Rahman and Anas (2004), and Wildasin (1986a)

show derivations of the theorem in different contexts. The Henry George Theorem can be broadly

interpreted as a test for whether an isolated city has optimal population, or as a guide for how to

implement this optimal size via taxation and subsidies.

To connect with this result we can ask: can the central planner achieve efficiency by taxing

fixed factors and optimally redistributing via gross income subsidies? To answer this question, it

proves useful to first consider the aggregate returns to scale in our economy. Imagine we start in

an efficient allocation, where (21) holds, and let u∗ be associated maximized utility. Then, using

(A.5) we obtain:10

Shadow Value of Labor︸ ︷︷ ︸
1
χ

du∗
dL

= Spillovers︸ ︷︷ ︸
Γ

−Return to Land︸ ︷︷ ︸
π

. (25)

An increase of total population around an efficient equilibrium yields marginal social gains equal

10Formally, du∗/dL
χ

is the multiplier of the labor market constraint in the social planner problem, as confirmed in
Appendix (25)
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to the average spillover Γ but reduces the consumption of the fixed factor for incumbents by π. If

our planner could choose L for free (as in the HGT), an interior solution to that problem would

correspond to du∗

dL = 0, hence to Γ = π and to spillovers exactly capitalized in fixed factors (HGT).11

Does the HGT hold in the framework we presented? Given (21), this means in practice asking

whether the returns to fixed factors per capita, π, are at least as big as Γ. In that case, fixed-

factor taxes would suffice to implement the optimal gross subsidies Γj . Equation (25) shows that

Γ = π + 1
χ

du
dL , a generalized version of HGT: aggregate spillovers equal returns to fixed factor plus

the shadow value of labor (equal to zero in standard HGT with free labor). Fixed factors can finance

optimal subsidies if du∗/dL ≤ 0 (a negative shadow value of labor). Whether this holds depends on

parameters. However, cases with positive shadow value can be ruled out by the standard stability

requirement that duj/dLj ≤ 0: a marginal local labor increase must not increase local utility per

resident. Appendix (2.4.2) shows that assuming stability of the efficient market allocation implies

π ≥ Γ: taxing all fixed factors would, indeed, generate enough budget implement optimal subsidies

(Albouy et al. (2019) show a result in this style).12

Furthermore, the same stability argument implies Γj ≤ πj , where πj are local returns to fixed

factors, so that local taxes on fixed factors at j more than suffice to cover the gross subsidy Γj to

residents of j that implements efficiency according to (21). Therefore a particular redistribution

of fixed factors can implement the spatial allocation. Specifically, from (24), the allocation would

be efficient (requiring zero net subsidies, s∗j = 0) given local ownership rates ωj =
Γj−Γ
πj−π . Such

redistribution from owners of local fixed factors to local residents entails redistribution across

space, the landmark of the spatial policies we have discussed, because owners of local factors are

located across the economy. This result, however does, not necessarily imply that local governments

will choose this policy, a result that would depend on local developers market structure and their

objective function.

3 Extensions and Numerical Implementation

Having established the main results and intuitions in a simple model, we now go through a series

of extensions corresponding to more realistic assumptions typically made in the QSE literature.

Each section considers one deviation from the baseline model. We then turn to implementing the

theory quantitatively.

11In passing we remind the reader that this result reflects a core insight in urban economics (Henderson, 1974):
when developing cities is free (equivalently, when population size can be freely chosen), cities exist in an optimal
allocation only if spillovers are net-agglomerative (Γ = π > 0). If the external effects do not exist or are negative
(Γ ≤ 0) then the optimal distribution of economic activity is fully dispersed.

12Specifically, appendix (2.4.2) finds sign
(

duj

dL

)
= sign (Γj −Rjhj). That is, local utility grows with local pop-

ulation through local spillovers net of congestion through consumption of fixed factors, with stability ensured when
the latter is stronger. If stability holds across locations, adding up across j implies Γ− π ≤ 0.
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3.1 Trade Frictions and General Production Structure

This section considers more general production structures, where the economy may produce

many products, production takes place in several sectors connected by input-output linkages, and

trade is frictional. The key result here is that the optimal policy rules we have discussed so far hold in

this much more general model, as long as the spillover structure retains the same form. Specifically,

amenity and productivity spillovers are local (population in location j only affects productivity or

amenities in j), an assumption we relax later. In addition, productivity spillovers must also remain

sector-neutral (corresponding to urbanization externalities that are economy-wide, rather than

localization externalities that percolate sector-by-sector). As long as these restrictions are satisfied,

the exact same optimal policy rule (21) continues to hold. Of course, the spillovers have different

general-equilibrium ramifications in a more general model; however, market inefficiencies are still

fully tackled through the same policies distorting only location-level labor supply (or demand).

This compartmentalization of the inefficiencies reflects a broader “principle of targeting” noted by

Bhagwati and Johnson (1960) in trade-policy contexts and by Sandmo (1975) and Dixit (1985) in

economies with external effects.

We derive here the optimal policy rule by considering the maximization problem of a social

planner aiming to find an allocation that maximizes the common level of welfare in the econ-

omy, an alternative to the perturbation approach considered earlier. Workers have concave utility

uj

({
ckj

}
, Lj

)
over many private goods k with consumption per capita ckj . Production of k com-

bines efficiency units of labor Nk
j , unchanged compared to the basic specification, and possibly

other industries’ l output Xkl
j as intermediate. The production function is Y k

j

(
Nk

j ,
{
Xkl

j

}
l

)
. Fi-

nally, trade between locations is costly, with iceberg trade costs:
(
1 + tkji

)
Qk

ji units of good k from

j must be shipped to i for Qk
ji units to arrive. The index k may indicate a sector or a variety

produced in a given origin. Hence, this specification nests the typical Armington formulation used

in quantitative spatial models at the regional level, where products are differentiated by origin (see

Redding and Rossi-Hansberg (2017) and Allen and Arkolakis (in this handbook)). The formulation

also nests cases where the same good may be produced in different locations, such as in Sotelo

(2020) and Bergquist et al. (2022) analyses of spatially differentiated agricultural markets. Finally,

it also allows for gross flows of a homogeneous commodity to be purely in transit in a given location,

a case that forms the basis to study optimal transport networks in Section 5.

The optimal allocation maximizes u in the feasible set. The planner’s Lagrangian is thus:

L =u−
∑
j

ωj

[
u− uj

({
ckj

}
, Lj

)]
−
∑
j

Wj [Nj − zj (Lj)Lj ]− Ω

∑
j

Lj − L


−
∑
j

∑
k

pkj

[
ckjLj +

∑
l

X lk
j +

∑
i

(
1 + tkji

)
Qk

ji − Y k
j

(
Nk

j ,
{
Xkl

j

}
l

)
−
∑
i

Qk
ij

]
. (26)

The first-order conditions of this problem constitute necessary conditions for a maximum. If,

in addition, the objective function is concave and the constraint set forms a convex region, then
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they are also sufficient for optimality. In this case, finding a set of subsidies that guarantees

that these first order condition hold in the market allocation leads unequivocally to efficiency. In

the parameterized version of this model described below, Fajgelbaum and Gaubert (2020) derive

sufficient conditions for the planner’s problem to be concave. Quite intuitively, a sufficient (but

strong) condition is that spillovers are negative on net so that congestion dominates.

We wrote the problem such that, if the problem is quasi-concave and first-order conditions are

sufficient, the multipliers on inequality constraints are positive. Each multiplier corresponds to

a constraint in the feasible set, generalizing (3)-(7). The first constraint is the spatial mobility

constraint while the last is the national availability of workers, both equality constraints. The

other are inequality constraints: pkj is the multiplier on the constraint that consumption of sector-k

goods at j is limited by local goods availability, including imports and exports, while Wj captures

the local availability of efficiency units for production. In an efficient market allocation, the price

of product k in region j equals the multiplier pkj and the wage rate per efficiency unit of labor will

equal Wj .

The optimal policy is obtained by taking first-order conditions with respect to just consumption

per capita in each sector-location, and total employment by location. These two conditions are:[
∂ckj

]
ωj

∂uj

∂ckj
= pkjLj (27)

[∂Lj ] ωj
∂uj
∂Lj

−
∑
k

pkj c
k
j + wj

(
1 + εzj ,Lj

)
= Ω, (28)

where the second condition has used that, in a market allocation, wage per worker wj = Wjzj . Using

(27) and (28) along with first-order conditions of the consumer problem in the market allocation,

we obtain that, if the market allocation is efficient, the subsidies satisfy:13

sj = εzj ,Ljwj +
εvj ,Lj

εvj ,xj

xj − (π +Ω) . (29)

The optimal policy is the same as (21). We obtain again in particular, as discussed in the context of

the Henry George Theorem, that Γ = π+Ω where Ω is the shadow value of labor in the aggregate.

Since the derivations only used first-order conditions over ckj and Lj , it means that the supply-side

assumptions we made determining production, input-output structure, and trade are irrelevant for

the optimal policy rule.

3.2 Public Goods

Urban agglomeration of consumer-workers is often driven by the desire for access to public

goods that they collectively finance. The model so far treated amenities as a reduced-form object

that potentially increases with local population. In reality, public goods such as schools, parks,

and transportation systems are amenities that are typically provided by governments and must be

13Indirect utility is vj
(
xj ,

{
pkj

}
, Lj

)
≡ maxckj :

∑
k pkj c

k
j =xj

uj

({
ckj
}
, Lj

)
. The first order condition is

∂uj

∂ckj
= λpkj ,

where the multiplier λ of the budget constraint equals
∂vj
∂xj

, so
∂uj

∂ckj
=

∂vj
∂xj

pkj . Combining this condition with (27), and

further using (28) and the facts that
∂uj

∂Lj
=

∂vj
∂Lj

and
∑

k p
k
j c

k
j = xj = wj + π + sj gives (29).
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funded. A natural extension to the analysis conducted so far is thus to assume that residents enjoy

a pure public good gj provided by local or central governments, so that utility is uj (cj , hj , gj , Lj).

We focus here on a simple exposition of this case, and refer the reader to the handbook chapter

by Wildasin (1987) that discusses many subtleties that arise with the financing of public and semi-

public goods. We note that it is also straightforward to extend the reasoning to a productive public

good that increases firms’ productivity rather than locational amenities.

We assume that the public good is produced one-for-one with the traded good and that it is

non-rival and non-excludable, so that its cost is simply gj . A feasible allocation {cj , hj , gj , Lj , Nj , u}
now satisfies the following constraints:

uj (cj , hj , gj , Lj) = u if Lj > 0 (and ≤ u otherwise), (30)∑
j

cjLj + gj ≤
∑
j

Yj (Nj) , (31)

with the feasibility constraints (5)-(7) unchanged compared to the baseline, including potentially

spillover effects in utility and production. Two margins are potentially distorted: population

distribution, like before, and public good provision gj . A central planner would choose to provide

the local public good following the Samuelsonian condition for optimal public expenditure. A local

planner maximizing utility per resident without any strategic consideration would also do so.14 We

focus here again on spatial policies that tackle the optimal distribution of population.

Solving the planner’s problem as in the baseline model leads to the same optimality condition

(18) as before. Assuming for expositional simplicity that there are no amenity or productivity

spillovers of the kind discussed earlier (Γj = 0), the optimality condition is

wj − xj = Ω, ∀j. (32)

Whether the allocation without central planner intervention satisfies (32) depends on how the

local public goods are financed. Two polar cases are interesting to discuss. First, if local public

goods are financed by taxing the local fixed factors, then the budget constraint of local residents is:

xj = wj + π, where π is now defined after taxes. At any rate, it satisfies (32). Second, if the local

public good is financed by a local per-capita tax on workers, the budget constraint of local residents

is: xj = wj− gj
Lj

+π. This allocation is distorted and a central government would subsidize location

j to exactly offset this distortion, setting sj =
gj
Lj

+ s0 (with s0 to ensures the central government

budget clearing) to offset the distortive local tax. As a result, optimal funding of the public goods

is done with a constant lump-sum tax s0 across space (Helpman and Pines, 1980; Wildasin, 1980).

The intuition for these results is that, with a pure public good and a common constant marginal

cost of supplying it across space, a marginal worker in a location is not costly. However, variation

14In the efficient allocation, the planner chooses the levels of local public goods such that:
(

∂uj

∂cj

)−1 ∂uj

∂gj
Lj = 1,

the standard Samuelsonian condition for optimal public expenditure. The marginal cost to provide public service g
is 1 and equals the sum of marginal rate of substitution across individuals in the location. This condition obtains if
a local government maximizes the welfare of its residents taking its number as well as market prices as given; i.e.,

solving for gj = argmaxµ vj
(
wj + π − gj

Lj
, gj , Lj

)
, where gj is financed by local residents (the tax is

gj
Lj

). A rich

literature studies how local provision of the public good may play out in less stylized environments (Helsley, 2004;
Glaeser, 2013).

18



in per-capita tax rates affects relative appeal across locations, creating a distortion. A tax on local

fixed factors, in contrast, does not distort location incentives.

3.3 Heterogeneous Workers

We have so far assumed homogeneous workers. However, different demographic groups make

different location choices, resulting in spatial sorting. Moreover, efficiency and amenity spillovers

may vary across groups, in terms of both the spillovers each group experiences and generates on

the rest of the economy (Diamond, 2016). We introduce these forces and discuss policies that

implement efficient spatial sorting.15

The population is partitioned into groups θ ∈ Θ. Group membership is assumed to be ex-

ogenous. These groups could for instance be defined by demographic characteristics like levels of

education, age, or ethnicity. On the preference side, different groups may have different utility

functions uθj

(
cθj , h

θ
j ,
{
Lθ′
j

}
θ′

)
. The utility of type θ in location j may depend on the population of

all groups in that location, as captured by the vector
{
Lθ′
j

}
θ′∈Θ

. On the production side, workers

of different types may be imperfect substitutes in production of the traded good, as captured by

the aggregator of efficiency units

Nj = N
(
z1jL

1
j , .., z

Θ
j L

Θ
j

)
. (33)

The labor productivity of type θ in location j is zθj

({
Lθ′
j

}
θ′∈Θ

)
, which may again be a function of

the population of all groups in the location. Finally, government subsidies sθj as well as the claim

to returns to the fixed factors πθ may be group-specific.

These specifications are general enough to encompass various sources of heterogeneity that drive

spatial sorting emphasized in the literature (Diamond and Gaubert, 2022). Sorting may be driven

by comparative advantage in production, as some skills may be particularly productive in a given

location. The terms zθj capture this force, which may be exogenous - some skills are more productive

in some sectors that happen to be in some locations - and endogenous: a given skill group may be

subject to agglomeration effects in production. Sorting may also be shaped by different preferences

for locations. Again, this could be for reasons that are exogenous to sorting (e.g., retirees like to

live in warmer weather) or for reasons that are endogenous to sorting. For instance, local amenities

may depend on who lives in the location, and be in turn valued differently by different groups.

Finally, sorting may be shaped by cost-of-living differences between locations if they impact more

resource-constrained groups more. Non-homothetic preferences u allow for this force.

Although the discussion in this section is not about redistribution, we allow for the planner to

have heterogeneous Pareto weights λθ on the different groups. As the groups have different utility

functions, it is unclear how to compare utils of a given group to utils of another group. Tracing

out the whole Pareto frontier with arbitrary weights λθ sidesteps this issue. The planner chooses

allocations, and in particular population and consumption {Lθ
j , c

θ
j}, to maximize

∑
θ∈Ω λθuθ. It is

15Our presentation differs from the optimal sorting model of Helsley and Strange (2014) who consider sector-specific
agglomeration effects in a model where heterogeneous sectors hire sector-specific workers.
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again the case here that population and consumption distribution of a given group are one to one,

holding the distribution of other types fixed. Therefore, the planner can implement the efficient

population allocation by subsidizing each group so that they reach their optimal distribution of

consumption. Solving for the first-order condition of the planner problem yields the following

optimal subsidy for group θ in location j:

sθj =
∑
θ′∈Θ

ε
vθj ,L

θ′
j

ε
vθ

′
j ,xθ′

j

xθ
′

j L
θ′
j

Lθ
j

+
∑
θ′∈Θ

ε
zθj ,L

θ′
j

wθ′
j L

θ′
j

Lθ
j

−
(
πθ +Ωθ

)
. (34)

This optimal subsidy as a similar structure to (21). Optimal subsidies differ across groups because

they generate different spillovers. A type θ is subsidized in j when she generates high amenity

spillovers on to other inhabitants of the location, the first term in (34), and when she generates

high productivity spillovers on to other workers in j, the second term in (34). Finally, the term

Ωθ, which is constant across space for each group, measures how much the planner would be

willing to pay for adding a θ-type worker to the economy. It shifts group-specific subsidies in all

locations. This group-wide term tackles the pure redistributive concerns of the planner between

types. Through this term, subsidies increase monotonically for a group θ with the planner’s relative

preference for this group, λθ. With heterogenous workers, the optimal policy (34) assumes that the

planner has access to tax instruments that vary by place and by group.16

To illustrate the forces at play more concretely we conclude with a simple example.

Example 2. Consider two skill groups, Low and High. Utility of type θ ∈ {L,H}) is uθj = Aθ
jc

θ
j ,

so that there are no spillovers in amenities. The labor productivity of type θ is Zθ
j

(
Lθ′
j

)γθ′θ
Z

where

θ′ ̸= θ. That is, productivity spillovers happen across skill groups, and only across, with an elasticity

that is constant across space. Finally, there are constant returns to scale in production so that

π = 0.

In this example, the location-specific component of the optimal subsidy (34) is simply:

sθj = γθθ
′

Z

(
wθ′
j L

θ′
j

wθ
jL

θ
j

)
. (35)

The subsidy for θ−type workers varies across locations according to the distribution of relative wage

bills
wθ′

j Lθ′
j

wθ
jL

θ
j

. If group θ generates positive productivity spillovers on group θ′, i.e. γθθ
′

Z > 0, then

group θ receives higher subsidies in locations where it is relatively scarce. By the same token, if

both groups generate positive spillovers on the other group, their subsidies are negatively correlated

across cities. The scarcer the group in relative term, the higher the subsidy. Relative to a laissez-

faire equilibrium, this policy therefore tempers the degree of spatial sorting. More mixing of groups

is desirable as it increases productivity through co-agglomeration effects.

16More restricted tax instruments will not typically allow to reach the first best allocation, but may still improve
welfare.
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3.4 Cross-Regions Spillovers

Considering that agglomeration and congestion effects happen within a given location may seem

reasonable when considering large regions like states or MSAs. This is therefore a standard assump-

tion, consistent with classic approaches including systems-of-cities models (Henderson, 1974), new

economic geography (Krugman, 1991; Helpman, 1998), and quantitative spatial models (Allen and

Arkolakis, 2014). However, when studying economic activity at a finer geographic scale, it may

be appropriate to consider that the economic conditions in one area spillover to nearby areas. Re-

gional models such as Rossi-Hansberg (2005) and urban models as in Ahlfeldt et al. (2015) assume

spatially decaying spillovers. This may be incorporated in the baseline framework by assuming that

spillovers in a location depend on the distribution of population in all locations: uj (cj , hj , {Lk}k)
and zj ({Lk}k). The specific functional form used in Ahlfeldt et al. (2015) is

(∑
j Lje

−δtjj′
)α

where

tjj′ is travel time between blocks j and j′ within a city and δ is a decay parameter.

The derivations of the baseline model go through with this more general specification of spillovers,

and yield the following optimal subsidy in location j:

sj =
J∑

k=1

εvk,Lj

εvk,xk

Lkxk
Lj

+
J∑

k=1

εzk,Lj

wkLk

Lj
− (π +Ω) . (36)

Non-localized spillovers lead to the intuitive implication that the optimal transfers should be

higher in places that generate strong spillovers to more and larger locations, as measured by their

total wage bill and total income.

3.5 Commuting and Congestion Tax

A strand of the literature studies economic geography models where individuals may live and

work in different locations. Abstracting from that force makes sense when considering large regions,

but it is a relevant feature when studying policies targeted at neighborhoods, like the Enterprise

Zone programs in the U.K. or the U.S. for instance.

To account for commuting, the structure of the model changes. Households freely choose where

to live and where to work. Ljk workers chose to commute from residence j to workplace k. More

generally, all choice variables can depend on both residence and workplace and are indexed by

jk. Worker face a disutility of commuting. Denoting δjk the time spent commuting between j

and k,
∂ujk

∂δjk
< 0. The economy is potentially subject to three types of spatial spillovers. First,

productivity in workplace k is a function of local employment through classic agglomeration effects

in production, zj

(∑
j Ljk

)
. Second, utility depends on local population Lj =

∑
k Ljk as it may

shape local amenities. Finally, time spent commuting can depend on “traffic” on the route. To

build intuition and introduce the topic, we assume that traffic congestion for travelers from j to k

depends on the numbers of those travelers only: τjk (Ljk), with τ ′jk (Ljk) ≥ 0.17 Here, some form of

congestion on a route is needed to rationalize the fact that, in the data, residents of a given location

17Of course in reality congestion on the route between j and k depends not only on commuters who directly
commute from j to but also on all other commuters that use part or all of this route in their commute. This feature
can be incorporated using the optimal transport tools described in Section 5.
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typically commute to different workplaces that offer different wages. This is consistent with free

mobility and utility equalization across all choices if τjk adjusts endogenously in equilibrium.18

The planner now maximizes the common level of utility u, equalized across all residence-

workplace pairs that are chosen (u = ujk (cjk, hjk,
∑

k Ljk, δjk) whenever Ljk > 0). The logic

remains similar to the baseline case: it can be seen from the set of feasible allocations that each

vector of Ljk corresponds to only one distribution of consumption xjk. Therefore, the planner

chooses subsidies sjk that depend on both residence and workplace to implement an efficient al-

location of population. Given the condition for efficient population distribution, the subsidy that

implements it is:

sjk =
∑
l

εvjl,Lj

εvjl,xjl

Ljlxjl
Lj︸ ︷︷ ︸

residence−j specific

+ wkεzk,Lk︸ ︷︷ ︸
workplace- k specific

+
εvjk,δjkεδjk,Ljk

εvjk,xjk

xjk − (Ω + π) (37)

The optimal subsidy to a jk worker decomposes into three terms. The first two terms are com-

mon with amenity and efficiency spillovers that were present in the framework we have developed

before. Specifically, the first term tackles the amenity spillover (increasing jk commutes raises the

number of residents in j irrespective of their workplace l) and the second term tackles the pro-

ductivity spillover (subsidizing jk commutes raises employment, hence agglomeration effects, in k).

The third term is a congestion tax: adjusting the subsidy to congestion and the origin-destination

pair commute pair level. This term is negative and tackles the congestion caused by additional

commuters on a route. In popular specifications with constant elasticities, the congestion tax is

space-invariant: the overall optimal subsidy simplifies into the sum of a residence-specific and a

workplace-specific terms only, as the next example, which augments Example 1 with commuting,

shows.

Example 3. Utility is ujk =
cjk
δjk

(Lj)
γA , where δjk = δ0jkL

γT
jk . Labor productivity in k is

zk

(∑
j Ljk

)γZ
. Production has constant returns to scale so that π = 0.

In this example, the optimal subsidy (37) becomes:

sjk =
∑
l

γA
1 + γT

Ljlxjl
Lj

+ wk

(
γZ − γT
1 + γT

)
− Ω

1 + γT
. (38)

Since the congestion elasticity γT does not depend on the route, neither does the congestion-tax

component of the overall subsidy, and the subsidy can be recast as the sum of a residence and a

workplace-specific terms.

18The QSE literature typically assumes no congestion in commuting costs. Instead, in order to generate heteroge-
neous choices of workplace k for residents of j, it assumes that workers have heterogeneous idiosyncratic preferences
for commuting routes (see e.g. Monte et al., 2018). This turns out to lead to isomorphic expressions. However, the
interpretation of the normative properties of two models differ. One (presented here) has spillover in congestion, the
other does not. One (presented here) has homogeneous workers, the other does not. Therefore, optimal subsidies cor-
rect an inefficiency here, but are redistributive in the version with heterogeneous workers and no congestion. Section
4 discusses this theme and the normative implications of models with idiosyncratic preferences more generally.
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3.6 Quantitative Implementation

This section moves on to show how to take these results to the data, quantify efficient policies

and compute the corresponding allocation. To do it in practice requires further parameterization

of the model.

3.6.1 Steps

The optimal allocation in the models we have discussed above corresponds to an equilibrium X∗

(for example, =
{
c∗j , h

∗
j , N

∗
j , L

∗
j , w

∗
j , u

∗
}

in the model of section (2)) that satisfies the definition of

a competitive allocation with optimal transfers (i.e. transfers such that equation (21) is satisfied in

the example). Implementing the optimal allocation requires knowledge of the model’s fundamentals

(shifters of production or utility functions, bilateral trade costs) and a parametrization of elasticities

(production function and utility parameters and spillover elasticities). We describe here an approach

to doing this, in two steps.

The first step (“hat algebra”) is standard in quantitative spatial models (as reviewed in other

chapters of this handbook). This step derives a system of equations that describes how the allocation

changes in response to a policy shock, rather than describing the new equilibrium. The variables

of interest are relative changes X̂ = X
′
/X of counterfactual outcomes X ′ relative to the initial

equilibrium X. These changes X̂ are expressed as a function of data D (i.e., the initial equilibrium),

elasticities Θ, a vector of initial spatial subsidies s, and a vector of shocks ∆s to these spatial

subsidies: X̂ (D,Θ, s,∆s). This step is convenient because it implicitly calibrates the unobserved

fundamentals of the model to exactly match the observed distribution D of economic activity.

In this process, the procedure identifies D summary statistics that, together with initial spatial

subsidies s, suffice to answer the counterfactual question given the shocks and the elasticities. This

data requirement is typically a subset of the variables X of the model.19

The second step (optimization) finds the optimal policy shock ∆s∗. One way to proceed is to

numerically optimize over the distribution of feasible values of ∆s to maximize the change in utility

per worker compared to an observed allocation:

∆s∗ = argmax
∆s

û s.t. X̂ = X̂ (D,Θ, s,∆s) (39)

where the X̂ (D,Θ, s,∆s) are the changes in endogenous variables (including û) given by feasible

changes in subsidies ∆s. An alternative procedure is to use the closed-form solution that charac-

terizes optimal policies (such as (21) for the model of section (2)). This closed-form solution is an

optimal policy expressed as a (subset of) the elasticities Θ and the variables in X evaluated at the

optimum X∗: s∗ (Θ, X∗). By construction, the optimal subsidies s∗ and optimal reallocations X̂∗

19This type of derivations was first introduced by Dekle et al. (2008) in the context of international trade models
and is often applied in quantitative spatial models, and they apply more generally than to the model described here
(see Adao et al. (2017) for a discussion of generality of these models in trade setups). In spatial setups, Dingel and
Tintelnot (2020) discuss limitations and alternatives of this approach in high-dimensional models, such as those with
commuting we discuss below.
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solve:

X̂∗ = X̂ (D,Θ, s,∆s∗) , (40)

∆s∗ = s∗
(
Θ, XX̂∗

)
− s. (41)

The first line implements a counterfactual using the optimal policy shocks. The second line evaluates

the optimal policy rule at those counterfactual values, X∗ ≡ XX̂∗.20

Regardless of how this second step is implemented, the upshot is that the optimal reallocations

X̂∗, and therefore the optimal allocation and transfers, are ultimately expressed as a function of

model elasticities Θ and of the cross-section of economic activity D, which is exactly rationalized

by the model (given elasticities). Fajgelbaum and Gaubert (2020) numerically implement the

optimization using (39) and then use (41) to verify the solution.

The obvious practical concern is whether the optimization problem in (39) is well-behaved

(admitting a unique interior solution) or, equivalently, whether the solution to the system (40)-(41)

is interior and unique. Showing concavity of (39) ensures uniqueness of (40)-(41).21 Fajgelbaum and

Gaubert (2020) provide sufficient conditions for concavity, requiring congestion forces (concavity

in production of tradable and non-tradables) to be stronger than agglomeration forces entering

through zj (Lj) and u (·, Lj). We apply their result in a special case below.

3.6.2 Data and Measurement Issues

Implementing these steps requires data on both D and s. The content of D depends on model

specification (see Allen and Arkolakis (2025) for details in standard spatial frameworks). Measuring

the spatial subsidies s is a more specific issue that arises in our context. A challenge in doing so

is that spatial policies take many different forms and are managed by different entities targeting

different type of recipients (e.g. firms, workers, local governments). A “bottom-up” approach to

measuring s would be to compile all existing subsidies. Hanson, Rodrick and Sandhu (2025) compile

information on a wide range of place-based programs that could be useful to pursue this approach.

An alternative “top-down” approach, is to start from the condition sj = xj−wj−π, and measure

(xj , wj , π) to infer sj . Fajgelbaum and Gaubert (2020) follow this approach and use census and

BLS data data to measure labor income wj , expenditure xj and capital income π. This approach

has several caveats. First, income and expenditures may be different across space because people

are systematically different. Also, different people receive different transfers that might not be

place-based. To partially assuage these concerns, Fajgelbaum and Gaubert (2020) use measures of

(xj , wj) that are net of variation in socio-demographic characteristics across space. A second issue

is rooted in the static nature of the model: in a static model, the difference between income and

expenditure corresponds to government transfers, but in reality, savings also shape the difference

20This approach has been used in quantifications of optimal subsidies and trade policies in international trade
frameworks, e.g. see Lashkaripour and Lugovskyy (2023).

21A related concern is whether the solution to the hat-algebra system X̂ (d,Θ, s, ŝ) from the first step is uniquely
defined given ŝ. Allen and Arkolakis (in this handbook) present a detailed discussion of uniqueness in spatial models
given shocks to fundamentals.
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between income and expenditure. Conditioning on socio-demographic characteristics, differences

in savings in space will confound the measurement of transfers.

3.6.3 Implementation in a Simple Case

We illustrate the implementation based on the model of Section 2, which we now parame-

terize using constant-elasticity functions. Utility is Cobb-Douglas in tradables and housing and

multiplicative in the amenity spillover:

Uj (cj , hj , Lj) = Ajc
αCh1−αCLγA

j . (42)

Tradable output is linear in efficiency units:

Yj (Nj) = zYj Nj , (43)

and efficiency units per worker are a power function of workers,

zj (Lj) = ZjL
γZ
j . (44)

Hat-Algebra Step We first construct the system of equations X̂ (D,Θ, s, ŝ). Conditions (45)-

(47) below define the equilibrium changes X̂ =
{
L̂j , x̂j , û, π̂

}
as function of data D = {wj , Lj , xj},

elasticities Θ = {αC , γA, γZ}, initial policies sj , and policy shocks ŝj . The spatial equilibrium

condition (14) yields:

û = x̂αC
j L̂−1−αC−γA

j , (45)

The returns to land π̂ must be consistent with goods market clearing (4),∑
j

sXj x̂jL̂j =
∑
j

sWj L̂1+γZ
j︸ ︷︷ ︸
ŵjL̂j

, (46)

where sXj and sWj are shares of j in aggregate expenditures and wages (or tradable output), respec-

tively. Finally, û must be consistent with labor market clearing (7),∑
j

sLj L̂j = 1, (47)

where sLj is region j’s labor share. The previous system is written as function of arbitrary shocks

to expenditure per capita x̂j . In turn, using (11), expenditures change according to:

xj x̂j = L̂γZ
j︸︷︷︸
ŵj

+ππ̂ + sj ŝj . (48)

We note that the changes in expenditure per capita x̂j can be treated as an exogenous shock to the

system, as there is always a set of ŝj that can rationalize any desired x̂j . We exploit this property

in the optimization step.

Optimization Step One alternative is to solve (39), i.e. numerically solve for
{
û, x̂j , L̂j

}
that maximize û subject to (45) to (47). We would maximize over 2J+1 variables subject to 2J+1
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constraints. The optimal transfers ŝj can be obtained residually from the definition of expenditures

using (48).

Another approach is to exploit the solution for optimal policy (21). Expressed in relative

changes, the optimal policy rule is:

x̂j =
1 + γZ
1− γA

sWj

sXj
L̂γZ
j +

Y

L

(
1

αC
− 1 + γZ

1− γA

)∑
j

sWj L̂1+γZ
j , (49)

where to obtain this condition we combined (21) with (48) and (46) to solve for ππ̂. Furthermore,

combining (45) with (47), utility change is a function of the distribution of expenditure changes:

û =

∑
j

sLj x̂
αC

1−αC−γA
j

1−αC−γA

(50)

The optimal allocation is the
{
û, L̂j , x̂j

}
that jointly solves (45), (49) and (50) (a system with 2J+1

equations with same number of unknowns). Again, optimal changes in subsidies can be recovered

using (48). Applying results from Fajgelbaum and Gaubert (2020), the planners’ problem is convex

if γA+(1 + γZ)αC < 1 . This sufficient condition means that agglomeration spillovers must be not

too strong, and that higher consumption of housing (a lower αC) makes concavity more likely. In

that case, the system that solves (45), (50), and (49) has a unique solution. As a result, we obtain{
û∗, L̂∗

j , x̂j
∗
}
as a function of data d = {wj , Lj , xj , π} and elasticities Θ = {αC , γA, γZ}.

3.6.4 Numerical Examples

We now conduct a quantification exercise based on different model specifications. A first speci-

fication corresponds to the model we have just solved for in section 3.6.3. This is the baseline model

of Section 2 with homogeneous workers, local spillovers, and production of a freely traded good

(specialized here to constant returns to scale); we refer to this case as model 1. The second spec-

ification augments that model with two groups of workers who generate and benefit differentially

from local spillovers as described in section 3.3. The supply of efficiency units in (33) combines

the two worker types using a CES production function (model 2). Finally, the third specification

augments model 2 with trade frictions and product differentiation as in 3.1; specifically, each region

produces a differentiated good that is traded across space subject to trade frictions as in standard

quantitative spatial models (model 3). We show that moving from the baseline model to a model

with extra layers that make it more realistic impacts the optimal policies in significant ways.

All three examples are based on U.S. MSAs. The models are calibrated following similar sim-

ilar steps and data sources as Fajgelbaum and Gaubert (2020). In particular, the calibration

of spillover elasticities combines estimates from Ciccone and Hall (1996) and Diamond (2016).

Model 1 with homogeneous workers employs the constant spillover elasticities εzj ,Lj = 0.06 and
εvj,Lj

εvj,xj
= −0.19, which are net congestive. Model 2 and 3 have two types of workers (high- and low-

skill corresponding to workers with and without a college degree, respectively) with heterogeneous

spillovers. The calibrated matrices of spillovers are:
(
γPLL, γ

P
HL, γ

P
LH , γPHH

)
= (.003, .044, .02, .053)
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and
(
γALL, γ

A
HL, γ

A
LH , γAHH

)
= (−.43, .18, −1.24, .77). These parameters imply strong positive

amenity spillovers generated by high skill workers and negative spillovers generated by low skill

workers. The single-worker and heterogenous-workers spillovers are consistent, in the sense that a

a properly weighted average of the heterogeneous elasticities yield the homogeneous-worker elastic-

ities.22

First-Order Gains from Increasing Subsidies We start by implementing the exercise in

section 2.3 that ranks cities in the observed equilibrium according to the model-predicted returns

to increasing their spatial subsidy. Figure 1 plots Γj , sj , and Γj − sj in the cross-section of cities

for the homogenous group of model 1 (panel (a))and separately for the low-skill workers (panel

(b)) and high-skill workers (panel (c)) in model 2.23 According to this metric, the cities that would

yield higher returns to a marginal increase in spatial subsidies (higher Γj−sj) tend to be high-wage

cities in model 1. This result may seem surprising given that externalities are net congestive, so

that in a laissez-faire equilibrium high-wage cities generate more congestion. Indeed, in panel (a)

of Figure 1, the spillovers Γi do decrease with city wage. However, the spatial transfers si in the

observed equilibrium also decrease with city wage (in the direction the theory suggests is optimal)

and they do so faster than the spillovers. Thus, the equilibrium is distorted in the opposite way

than what externalities alone would predict: around the observed equilibrium, reducing taxes in

high-wage cities increases welfare.

Moving on to the two groups case, we first notice a different scale in the axes: the calibrated

spillovers, in particular those coming from amenities, are very large in absolute magnitude for some

groups. The spillovers generated by low skill workers are more negative in higher wage cities, as in

model 1, but this spillover is much stronger than in the baseline model, with existing subsidies rel-

atively smaller in low-wage areas. Therefore, the next dollar spent on spatially subsidizing low skill

workers should go to lower-wage cities. In contrast, high-skill workers generate positive spillovers

on both types of workers. These spillovers are higher in higher wage cities, while existing subsidies

redistribute away from these cities. Therefore, the next dollar spent on spatially subsidizing high

skill workers should go to higher wage cities.

Optimal Subsidies Next, we solve for the optimal system of spatial transfers in these economies.

Figure 2 reports s∗j/wj (net optimal subsidies relative to current wage) across MSAs, again as a

function of the wage in the observed allocation. In model 1, the optimal spatial transfers redis-

tribute towards lower-wage cities. This result comes from externalities being net dispersive in this

calibration. However, the actual allocation features stronger redistribution than what these param-

eters imply, similar to what we observed in the previous local exercise. As a result, larger high-wage

cities are being taxed too much from the perspective of efficiency under these parameters. The wel-

22See appendixes B.2 and D.1 of Fajgelbaum and Gaubert (2020).
23Model 3 is identical to model 2 in terms of their observed population, wages, and expenditure, and therefore in

terms of first-order effect of a shock represented here. These models differ however when considering larger shocks.
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(a) Model 1 (homogeneous workers)

(b) Models 2 and 3 (low skill workers) (c) Models 2 and 3 (high skill workers)

Figure 1: Returns to Marginal Subsidies across Cities
Note: All series are re-centered to their mean.

fare impacts associated with these reallocations are however negligible (around 0.02%, with this

order of magnitude not being affected by increasing or decreasing each spillover elasticity by 50%).

Figure 2 reports the optimal subsidy in models 2 and 3 by group of workers. Breaking down

the model by skill groups radically changes the qualitative message. Within the low-skill group,

optimal transfers redistribute to low-income places much more strongly than in the data, a re-

sult of the strong negative congestion spillovers among low-skilled workers in the calibration. In

contrast, high-skill workers generate positive productivity and amenity spillovers on both types.

The direction of the optimal subsidy is therefore ambiguous: positive spillovers on the own group

pushes towards high-skill concentration in high-wage areas, but the positive spillovers on the low-
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(a) Model 1 (homogeneous workers)

(b) Model 2 (heterogeneous workers) (c) Model 3 (het workers and trade frictions)

Figure 2: Optimal Transfers
Note: All series are re-centered to their mean.

skill pushes towards subsidizing a higher concentration of high-skill in low-skill intensive places.

On net the second force dominates in this calibration, favoring more mixing between low- and

high-skill workers in low-wage areas than in the actual allocation. Moreover, this pattern stands

in stark contrast with the first-order approach from panel (c) of Figure 1. While the incentives for

increasing the concentration of high skill workers dominate locally around the observed allocation,

it is more beneficial globally to foster growth in low-income locations through a greater presence of

high-skill workers there. The welfare impacts of optimal subsidies are now more significant, with

around 1% welfare gains for both worker types.
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The patterns appear qualitatively similar between models 2 and 3, implying that incorporating

trade frictions does not affect which cities should be subsidized to attract high- and low-skill workers.

The quantitative extent of optimal subsidies, however, does differ somewhat across these two cases.

The pattern of redistribution towards currently low-wage cities is stronger in the presence of trade

frictions.

3.7 Recent Applications

We conclude this section by reviewing research that has quantified the effect of spatial policies,

either using the class of models developed above or using different frameworks.

Optimal Population Sizes with Homogeneous Workers Fajgelbaum and Gaubert (2020),

Eeckhout and Guner (2017), and Albouy et al. (2019) compute gains from optimal population dis-

tribution in the U.S. in a case with homogeneous workers and reduced-form amenity or productivity

spillovers. They all impose spillover elasticities in the range typically estimated in the empirical

studies. Across papers there are many differences in terms of functional forms, parametrization,

forces included in the model, and data. Fajgelbaum and Gaubert (2020) uses a quantitative spatial

model with heterogeneity in fundamental productivity, amenities and trade costs to match observed

data on wages, expenditures and trade; while Albouy et al. (2019) uses a model with free entry of

cities and productivity heterogeneity only. Despite the differences, these exercises give two fairly

consistent messages. First, optimal population reallocation under these assumptions leads to small

welfare gains (ranging from negligible in Fajgelbaum and Gaubert (2020) to about 1% in the other

studies). Second, optimal policies to correct spillovers should on net redistribute from rich to poor

locations, but observed redistribution is stronger than what is optimally prescribed on efficiency

grounds only, implying that larger cities grow on net in the efficient allocation compared to what

is observed in the data. However, both messages are highly sensitive to considering heterogenous

rather than homogeneous workers, as we discuss below.

Various papers have studied population misallocation across Chinese cities due to external

effects, paying particular attention to frictions caused by the Hukou migration system. Au and

Henderson (2006) uses a systems-of-cities model, where utility per worker is inverted-U shape

with population. The model features agglomeration effects driven by input differentiation as in

New Economic Geography models and reduced-form Marshallian externalities. These forces are

dominated at large city scale by internal commuting costs. The calibration of the model yields

heterogeneous city-level productivity elasticities, in contrast with the previous papers. They are

driven by different input shares in production in different cities, calibrated from the data. Using

reforms to the Hukou system as a source of variation, they find evidence consistent with an inverted-

U shape in GDP per worker. The paper concludes that Chinese cities are largely undersized,

compared to a benchmark where each city would choose its optimal population size by independently

maximizing its GDP per-capita. This approach is consistent with cities that can draw workers from

rural areas and with workers unable to migrate freely between cities. Wu and You (2023) revisit
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this conclusion in a framework where Hukou rules are captured by taxes and workers can reallocate

freely. They find the largest Chinese cities to be smaller than what a national planner would

choose, as in the U.S. papers mentioned above, although they appear too large from a perspective

of maximizing city-level utility.

Public Spending and Local Tax Rates The previous papers take a reduced-form approach

to model spillovers, without stressing a particular microfoundation. Some papers have quantified

optimal policies accounting for the structure of local taxes as a source of distortions in contexts

where public spending is the agglomeration source.24 Fajgelbaum et al. (2018) study state taxes in

the U.S. incorporating income, sales, and corporates state taxes in a framework where workers and

firms respond to taxes by moving. Rates of mobility and preference for government services are

estimated using tax changes. They find that eliminating dispersion in local tax rates would raise

national welfare gains by 0.6%. Albouy (2012) and Blouri and Ehrlich (2020) consider optimal

intergovernmental grants in Canada and the EU. Albouy (2012) shows evidence suggestive that

those transfers do not seem to match criteria of equity or efficiency. Most papers assume that

governmental transfers are paid directly to residents or used for a homogeneous government good;

Blouri and Ehrlich (2020) instead consider alternative uses and argue that the optimal transfers

should be used as wage subsidies in poorer peripheral EU regions and as infrastructure investments,

which reduce bilateral travel times, in productive central areas. Henkel et al. (2021) match a

quantitative spatial model of Germany to the spatial transfers used by local governments to invest

in public goods. Their calibration suggests that optimal transfers would double the welfare gains

from spatial policies, with optimal transfers following the same direction as the current system but

smaller in scale. Kim (2023) estimates preferences for government services after a fiscal reform

in South Korea and argues that jointly accounting for detailed migration and commuting margins

matters to compute optimal interregional government transfers.25

Optimal Worker Sorting Fajgelbaum and Gaubert (2020) implement optimal spatial policies

in the U.S. using a framework with two types of workers, low and high skill. The results contrast

with the case with homogeneous workers. They find larger gains and optimal transfers that are very

different. Bilateral spillovers across worker types in both amenities and productivities, based on

24A large literature dating back to Wilson (1986) and Zodrow and Mieszkowski (1986) has investigated conditions
such that taxes and transfers lead to an efficient allocation as a result of inter-governmental competition. Recent
quantitative analyses have incorporated endogenous spatial tax rates as a source of misallocation. One of the primary
place-based policies used in the United States is business tax incentives aiming to attract firms (Slattery and Zidar,
2020), and Ferrari and Ossa (2023) quantify the losses from a non-cooperative Nash equilibrium in state subsidies.
D’Amico (2021) studies a model federal spatial are decided by local voters, whereas Slattery (2024) models the
competition between local governments trying to attract firms by offering discretionary subsidies as an auction.

25A strand of the literature also studies how existing place-blind taxes distort spatial allocations. Specifically,
progressive federal income taxes lead to efficiency losses by taxing high-wage locations relatively more. Albouy
(2009) argues that the income tax system should be based on real income rather than nominal income to reduce this
inefficiency, while Colas and Hutchinson (2021) calibrates a model with heterogeneous households to argues that the
efficiency gains of reducing the tax burden on high-income cities needs to be balanced out against the corresponding
negative distributional effects.

31



Diamond (2016), strongly drive the results. Given those elasticities, which imply positive spillovers

from high- to low-skill workers, common welfare gains for all workers of around 4% are attained

by implementing optimal transfers, with optimal redistribution from high- to low-wage locations

being stronger than in the data for both groups. Larger U.S. MSAs are too large on average, and

particularly so in terms of high-skill workers, although this result masks considerable heterogeneity

across MSAs. The optimal allocation reallocates high-skill workers into small, high-skill-scarce

cities to generate more mixing in these locations.

Rossi-Hansberg et al. (2019) also implement optimal transfers with heterogeneous workers.

The paper is motivated by the trend towards spatial polarization of occupations in the U.S., with

cognitive occupations increasingly concentrated in large cities. The model features industries that

differ in how intensively they use cognitive occupations. They estimate productivity spillovers by

worker type from the response of model-implied productivity to city size and composition. They

find that workers in cognitive occupations benefit from positive spillovers within their group, but

face negative spillovers from other groups. On the preference side, the model does not account for

amenity spillovers, instead relying on idiosyncratic worker preferences for location as a congestion

force. The optimal allocation involves more clustering of cognitive occupations than observed, i.e.

higher polarization. However, cities hosting these clusters shrink due to congestion effects.

Optimal Transfers with Local Distortions A literature studies the impact of removing local

distortions or “wedges” to correct spatial misallocation, rather than implementing transfer policies

that yield efficiency. We mention here only a few papers which are more closely related to our

central theme of implementing optimal transfers.26 In a systems-of-cities framework similar to Au

and Henderson (2006) that also includes amenity spillovers, Desmet and Rossi-Hansberg (2013)

studies city-specific labor wedges in U.S. and China. They infer these wedges using an approach in

the style of Hsieh and Klenow (2009). They find a bigger role for these frictions in driving the size

distribution of cities in China than in the U.S., as well as larger welfare impacts of removing them

in that country. In this framework, efficiency losses due to agglomeration and congestion spillovers

appear very small under homogeneous workers. Hsieh and Moretti (2019) use a neoclassical spatial

model to argue that wedges in land markets, in particular heterogeneous land regulations leading

to heterogeneous housing supply elasticities, may drive misallocation across U.S. cities. A caveat

to their approach is provided by Greaney (2023), who cautions that modeling distortions to land

markets as a shock to an elasticity makes the welfare impacts unit-dependent. He proposes a way

to adjust the housing elasticities and, when doing so, finds a negligible impacts from heterogeneous

housing supply elasticities on welfare.

Optimal Firm Sorting Gaubert (2018) considers a model where heterogeneous firms benefit

differently from agglomeration effects. The firms that have the most to gain from agglomeration

26Other papers removing frictions in a spatial allocation include for example Behrens et al. (2017) for both trade
and spatial frictions in a systems-of-cities model, Tombe and Zhu (2019) and Bryan and Morten (2019) for removing
migration frictions in quantitative spatial models, and Franco (2024) for spatial dispersion in markups.
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effects are the most productive firms and they sort therefore into larger cities. In this context, the

use of place-based policies - which typically subsidize firms in low-productivity areas - turns out to

have negative welfare impact, as they prevent firms from sorting to the right place. Furthermore,

they hurt areas that have slightly higher productivity, from which firms move out chasing subsidies.

These places lose agglomeration effects, hence lose more firms, that move to larger, more productive

areas. As a result, large and small cities grow, but middle-sized cities shrink. These policies

therefore do not necessarily reduce spatial inequality between cities.

Motivated by the rich and persistent heterogeneity in employment rates across location, Bilal

(2023) develop a theory of job search where employers with heterogeneous productivity sort over

space. Workers are also free chose where to live. They match subject to search frictions. In

equilibrium, high productivity employers have the most to lose in locating in areas where workers

are harder to find. Therefore, they sort into slack labor markets. This sorting predicts local

labor market flows that are consistent with empirical evidence. Such spatial equilibrium features

misallocation because of a labor market pooling externality - low productivity employers are too

shielded from competition with high productivity employers on the labor market. Optimal policies

incentivizes productive employers to relocate toward high-unemployment locations.27

3.8 Future Research

The discussion suggests several areas where more research would be useful. Analyzing optimal

spatial policies in dynamic frameworks is one avenue, as a host of real-world considerations cannot

be addressed with static models. For example, accounting realistically for migration frictions in de-

signing policies calls for a dynamic approach. Furthermore, place-based policies may be temporary

rather than permanent. Central governments may leverage the inter-temporal nature of their bud-

get constraint to subsidize locations, as spillover effects may be dynamic and take time to unfold.

The literature has made progress on developing dynamic spatial frameworks with agglomeration

effects (Desmet et al., 2018; Allen and Donaldson, 2020; Nagy, 2023); see the chapter on dynamic

spatial models in this handbook. These frameworks seem ripe for optimal policy analysis. Donald

et al. (2023) and (Wu and You, 2023) study optimal spatial transfers in the dynamic framework

with migration frictions of Caliendo et al. (2019).

Another interesting theme that has been unexplored in the quantitative spatial literature con-

cerns optimal policies outside the region of the parameter space where models are “well-behaved”

and feature unique equilibria. Whether the market economy operates in this multiplicity region

is an empirical question that depends on parameters. However, this question seems important

because a fundamental idea behind some place-based policies is the notion of a “big push” to jump-

27Recent papers develop models of two-sided sorting of firms and workers across space. Oh (2023) and Hong
(2024) characterize the equilibrium of such models and show they predict the colocation of high productivity firms
and workers in larger cities. They discuss efficiency in the context of the different spatial externalities that may arise.
In Oh (2023), frictional labor markets lead larger cities that are too large compared to the efficient allocation, as
they try to find better firms and earn higher wage. In Hong (2024), the optimal spatial policy would encourage more
co-location of high productivity firms and workers, while redistributing income to low-earning cities.
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start an area into a better, self-sustaining equilibrium. Focusing on the restrictive parameter space

where there is no notion of such alternative equilibria, as the current quantitative literature mostly

does, seems restrictive against this backdrop. Importantly, the methods reviewed in this section

and in the previous one can be used to obtain necessary conditions for optimal transfers even in

the multiplicity region of the parameter space; for example, the methods readily apply within the

multiplicity region of the classic Krugman (1991)-Helpman (1998) models, and could be equally

applied to quantitative versions of these models.

Throughout the discussion we have focused on first-best optimal policies. However, in reality,

policymakers may have access to less flexible instruments, such as policies that cannot vary by

location but can vary on other dimensions, such as by factor of production or income. Those policies

will not in general be able to achieve the first best, but may be able to improve on the market

outcome. A fruitful area for future research is to study second-best policies, and in particular

to determine how far from the first-best allocations these restricted policies lead to. A closely

related question is to investigate to what extent other policies that vary in space, such as zoning or

housing policies, help enhance efficiency when first-best instruments are not available. For example,

Kline and Moretti (2014) show that, around a free-market allocation without any transfers and

with efficiency spillovers, interventions that reallocate capital across locations do not have first-

order impacts on welfare via reductions in misallocation, suggesting a limited role for second-best

interventions in that context.

Finally, a greater connection between models and empirical estimates is needed. The theory and

the numerical examples we discussed show that a clear understanding of both the magnitude and

the shape and heterogeneity of spillovers is key to designing optimal spatial policies. Theory may

be ahead of empirics in this regard, both concerning agglomeration in productivity and, perhaps

even more so, agglomeration (or congestion) effects via amenities. A rich and growing empirical

literature estimates impacts of place-based policies in both the short and the long run across many

different contexts (e.g., Kline and Moretti (2014) in the U.S., or recently Atalay et al. (2023) in

Turkey and Incoronato and Lattanzio (2023) in Italy, among others). Typically these studies are

not focused on telling apart arguably efficient market interactions from general equilibrium effects

from spillovers, but doing so would be particularly informative for the design of optimal policies.

A recent literature focuses on estimating spillovers using rich face-to-face interaction data (e.g.

Atkin et al. (2022) or Couture et al., 2024), offering a new promising avenue to identify these

effects at highly disaggregated levels. Incorporating these micro measurements and teasing out

their aggregate policy implications would also be a promising avenue for research.

4 Spatial Policies as Redistributive Tools

Economic outcomes, including wages and income, vary significantly across regions with some

areas enjoying prosperity while others lag behind. These regional inequalities have become a press-

ing policy concern, leading governments to adopt place-based policies that redistribute resources
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to economically disadvantaged areas. This section focuses on the redistributive motive for these

spatial policies.

Indexing redistribution by place raises an important issue: if the goal is to redistribute from

richer to poorer households, governments can use progressive taxes and transfers indexed on income.

Is there, in addition, a rationale to use place-based redistribution? The traditional answer to this

question is “no” (see e.g. Glaeser (2008)). Place-based transfers are viewed as inefficient because

they encourage economic activity in less productive places at the expense of more productive

places. This section revisits this issue in the context of recent contributions and discusses specific

microfoundations such that policies may optimally condition on place, rather than on income alone.

To analyze this equity rationale separately from the efficiency rationale of the previous sections,

the model now deliberately excludes any efficiency-driven reasons for place-based policies such as

spillovers or public goods provision. As in these conditions the laissez-faire allocation is efficient,

the focus is solely on the redistributive objectives of place-based transfers.

4.1 Model setup

The country is comprised of J locations indexed by j where individuals may choose to live and

work. Production is kept as simple as possible. Perfectly competitive firms produce a homogeneous

and perfectly tradable good. They produce using labor under constant returns to scale with hetero-

geneous productivity across locations. Heterogeneous individuals are indexed by ω = (θ; ε), where

θ indexes skill and ε =(ε1, ...., εJ) is a vector of preferences over locations. These characteristics

may be correlated. Workers supply labor inelastically in their location, earning a wage wj (θ) for

skill θ equal to their output of the tradable good. Individuals consume the freely traded good and

make a discrete choice of location to obtain utility:

uω = max
j

uj
(
cωj
)
+ εωj . (51)

Both skill and preferences shape the location decision, but only skill influences location-specific

income. The utility function is concave in consumption c and is indexed by j, thus allowing

locations to differ in terms of amenities.

The central government is a benevolent planner who maximizes a social welfare function with

Pareto weights µω on type ω,

W =
∑
ω

µωuω, (52)

subject to budget balance. The planner’s taste for redistribution may come from heterogeneous

Pareto weights as well as from decreasing marginal utility in consumption. Preference shocks εωj
do not directly affect marginal utilities because they enter additively in (51), but they do matter

indirectly through location choice. Section 4.4 discusses the challenges posed by non-additive shocks

for normative analysis.

Assume first that the planner observes the individuals’ types ω and can implement transfers that

are ω-specific. In this case, social welfare W is maximized when the marginal utility of consumption
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of all individuals (weighted by their Pareto weight) is equalized. Individual-specific transfers are

chosen such that µω duω

dc is equal for all individuals.28 Such non-distortive transfers would constitute

an implementation of the second welfare theorem. In reality, however, the information set of gov-

ernments is more limited and taxes are typically indexed on observable choices made by individuals.

Taxes therefore distort choices, leading to an efficiency cost of redistribution.

We consider here two types of fiscal instruments indexed on choices: place-specific subsidies,

which are our main focus, as well as income taxes, which are ubiquitous in practice. Place-specific

transfers capture in reduced form the many ways in which a central government may channel

resources to specific locations. They summarize in particular how taxes vary across space and how

benefits are distributed across locations by the central government.29

We now define the planner’s problem. Let L (θ) denote the exogenous measure of agents of skill

θ and by Fθ({ε}) the distribution of preference shocks for skill θ. The planner can choose a vector

of place-specific subsidies {sj}j=1,..,N that are constant within a location, i.e. do not depend on

income. For realism, we allow these spatial transfers to complement an existing (place-blind) income

tax t(w). The consumption of an individual ω located in j is cj (θ
ω) = wj (θ

ω) − t (wj (θ
ω)) + sj

, where θω is ω’s skill. A measure Lj (θ) of individuals with skill θ choose location j (equal to

the choice probability for j among θ types times L (θ)), while Lj ≡
∑

θ Lj (θ) is the total number

of residents in j. As a reminder, location choice probabilities within a type θ are non-degenerate

because of the ε shocks within type.

The social welfare function is:

W =
∑
ω

µω max
j

{
uj (wj (θ

ω)− t (wj (θ
ω)) + sj) + εωj

}
(53)

subject to
∑
θ

∑
j

t (wj (θ))Lj (θ)−
∑
θ

∑
j

sjLj (θ) ≥ 0,

where the constraint is the government budget balance (equivalent to national goods market clear-

ing). We will use the notation uj (θ) ≡ uj (cj (θ)) as a shorthand for the common component of

utility in location j for skill θ. Throughout the section, when we talk about changes in social

welfare we mean changes in W .

4.2 When is Place-based Redistribution Desirable?

Arguably, place-based redistribution is justified as a redistributive tool only in contexts where

the income tax is insufficient to attain that goal. When is this the case? This question is moti-

vated after Atkinson and Stiglitz (1976), who show conditions under which taxing consumption for

redistribution purposes is superfluous if an income tax is available. Some of their insights carry

28Marginal utility is evaluated at the location chosen in equilibrium, i.e. duω

dc
≡

∂ui∗ω
∂ci∗ω

for

i∗ω = argmaxi uj

(
cωj

)
+ εωj .

29Taking the U.S. as an example, federal taxes may vary across space explicitly (e.g. the SALT deduction)
and implicitly, as analyzed by Albouy (2009). Federal transfers to local communities also vary widely across space
(UrbanInstitute, 2024).
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through to the context of location choices, but additional forces need to be considered here as, for

instance, location decisions impact both consumption and production.

Gaubert et al. (2024) tackle this question. They assume that an income tax system –perhaps

optimally chosen– is in place, and ask: can place-based redistribution increase welfare further?

For this analysis, the country is partitioned in two regions, i and j. The planner is utilitarian so

that µω = 1 for all individuals and the planner’s preference for income redistribution stems only

from the concavity of u (·). Starting with a place-blind income tax t (w) only, consider introducing

small place-based taxes. Specifically, we compute the welfare impact of a small perturbation that

introduces a lump-sum place-based transfer ds
Lj

to residents of the poorer region financed by a

lump-sum tax ds
Li

levied on the rest of the country. This place-based reform of the tax system is

ex-ante budget neutral. The social welfare change from this reform is:

dW

χ
= λ̄j − λ̄i +

∑
θ

[t (wj (θ))− t (wi (θ))] dLj (θ) . (54)

Place-based redistribution towards j is desirable when dW
χ > 0. In this expression, λ̄j is the average

social marginal welfare weight of location j. Formally, it can be computed as the average marginal

utility of income of residents of j:30

λ̄j ≡
1

χ

∑
θ

Lj (θ)

Lj
u′j (cj (θ)) . (55)

Intuitively, λ̄j measures the direct welfare effect of a marginal income gain for a resident of j,

expressed in terms of the cost of public funds χ (the Lagrange multiplier on the government bud-

get constraint). That is, the planner would be indifferent between giving a dollar to an average

inhabitant of j and getting λ̄j dollars of budget.

Assume that j is the poorer region and has a higher social welfare weight λ̄j . We come back

to why it might be the case next. Then, the term λ̄j − λ̄i > 0 in (54) captures the equity gain of

the place-based transfer from i to j, while the term
∑

θ [t (wj (θ))− t (wi (θ))] dLj (θ) captures an

efficiency cost given pre-existing income tax system. Some individuals move to j in response to

the subsidy; if, as a consequence, their income tax contributions fall (which they will typically do,

with wages being typically lower in j) then government revenues fall, a fiscal externality.31 As long

as this fiscal cost of movers is not too high compared to the planner’s valuation of the transfer,

introducing some place-based taxation is desirable.

Before moving on to specific examples that illustrate when such a reform may be desirable,

we review situations that may yield λ̄j − λ̄i > 0. A location may have a lower income for two

(possibly complementary) reasons. The first reason is spatial sorting, with low-skill workers rela-

30The computation of these welfare weights uses the Williams-Daly-Zachary theorem: in a random utility model
such as this one, with agents solving maxj uj + εj , the derivative of expected utility with respect to the common

component of utility of j equals j’s choice probability:
∂E(maxj uj+εj)

∂ui
= Pr (i = argmaxj uj + εj) (McFadden, 1978,

1980).
31In this case with linear production, the fiscal externality is the only efficiency cost. Outside the linear production

case, place-based taxation generically leads to distortions in production.
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tively more likely to locate in j. This spatial sorting may be driven in particular by different skills

having different preferences for location as captured by their distribution Fθ (ε), or by comparative

advantage in production captured by {wj (θ)}. The second reason is location-specific productivity:

workers may be less productive in j regardless of skill. These two sources of heterogeneous income

across space will have different implications for whether place-based redistribution improves upon

a place-blind income tax.The two examples below highlight polar cases where a place-based reform

increases welfare in the presence of a place-blind income tax.

Example 4. Preference-driven sorting.

Assume that, conditional on skill, workers have the same wage wk (θ) = θ in the two locations

k = i, j, hence the same income θ − t (θ). The income tax is left general, so long as net income

θ − t (θ) increases with gross income θ, an assumption that optimal income taxes satisfy (Piketty

and Saez, 2013). Spatial sorting is driven exclusively by the different preferences for locations across

different skills. An individual of type (θ, {εk}) faces utility:

uk = u (ck (θ)) + εk for k = i, j.

We assume u(.) concave, εi ∼ N (θ, 1), and εj = 0. Workers with skill θ get the same level of

consumption in both locations, hence choose to locate in i if εi − εj ≥ 0. This happens with

probability Φ(θ), increasing in θ, where Φ(.) is the CDF of the standard normal distribution.

Therefore, higher incomes are over-represented in i (in a first-order stochastic dominance sense),

implying λ̄j − λ̄i ≥ 0, an equity motive for redistributing from i to j. When a small place-based

subsidy to j is introduced, marginal workers of all skills (those for whom εi − εj = 0) move from i

to j. As they do, their income θ and hence tax contribution t (θ) do not change, hence there is no

efficiency cost. Following (54), some amount of spatial transfers unambiguously increases welfare,

a finding that mirrors classic result in public finance saying that taxing a consumption good may

improve upon taxing income alone when preferences are heterogeneous across goods (Saez, 2002).

Importantly, this is the case starting from any income tax schedule.

Example 5. Comparative advantage-driven sorting.

Assume now that productivity alone drives sorting. Specifically, below a certain skill level θ∗,

workers have the same income θ in both locations; but for skills above θ∗, wi = 2θ and wj = θ.

Thus, low-skill workers face no income differences in space, but higher skills earn more in i. Spatial

sorting ensues. To fix ideas, one can choose the distribution of net preferences for i, εi − εj , to be

common across skills and such that all high-skill workers strictly prefer i while low-skill workers

(below θ∗) live in both locations. This can be ensured assuming a large enough θ relative to the

support of εi − εj . In this case, location i has strictly higher incomes and redistributing from i to

j yields equity gains. A small subsidy to j induces lower-skill workers to migrate there without

experiencing an earning loss. Higher-skill workers, who are all inframarginal, remain in i even after

the introduction of the small subsidy. Hence, this place-based transfers yields equity gains at no

efficiency cost, implying by (54) that it is desirable.
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These polar examples echo trends highlighted in the empirical literature on spatial sorting.

College and non-college workers are estimated to have systematically different preferences for large,

coastal cities (Diamond, 2016), explaining in part their spatial sorting. In addition, high-skill tech-

nical jobs are increasingly concentrated over space (Moretti, 2012; Autor, 2019), disproportionately

attracting a high-skill population.

In these examples, place-based redistribution to poorer areas is unambiguously desirable. The

key force that potentially dampens the positive welfare impact of a place-based subsidy to the poor

region is the earnings response of movers. It arises whenever place has a causal effect on earnings

and workers are mobile. In fact, it is possible that a place-based subsidy to the rich, productive

region is desirable in some cases to incentivize workers to live in the productive location – despite

the increase in income inequality this reform generates.

These examples highlight some general lessons about the desirability of place-based policies.

Whenever spatial income differences are driven by spatial sorting and this sorting is driven by

preferences, the efficiency losses from spatial redistribution are small compared to their equity

gains. Place acts as a “tag”, although unlike the immutable tags considered by Akerlof (1978)

this one is chosen by households, becoming an attribute that is correlated with the sources of

income inequality such as skill. However, whenever sorting is driven by comparative advantage,

the desirability of spatial redistribution hinges on whether higher skill workers move into low-

income areas in response to the subsidies. In other words, if mobility responses are concentrated

in occupations without large earnings difference across space, then spatial redistribution towards

lower income places is desirable. Finally, when income differences are largely driven by place-based

components of productivity, it is ambiguous whether place-based redistribution is preferred.

4.3 Towards Optimal Spatial Redistribution

The previous section considered a marginal transfer around an initial equilibrium. This section

characterizes transfers that implement spatial redistribution optimally. It first considers lump-sum

spatial transfers, before moving on to spatial transfers that may be also indexed by income.

4.3.1 Lump-Sum Spatial Subsidies

A planner with social welfare function (53) chooses a vector of spatial transfers {sj} to regions

j = 1, .., J optimally. For this analysis, we take the place-blind income tax schedule t(.) as given.

The first-order condition of the planner’s problem characterizes optimal spatial transfers.

Optimality Test Setting up the Lagrangian and taking first order conditions with respect to sj ,

an optimal system of spatial subsidies verifies for all j ∈ 1, ..., J :(
λ̄j − 1

)
Lj =

∑
θ

∑
i

(si − t (wi (θ)))
∂Li (θ)

∂sj
, (56)

39



where λ̄j = 1
χ
∂W
∂sj

again denotes the average marginal social welfare weight of inhabitants of i

expressed in terms of cost of public funds χ (the Lagrange multiplier on the government budget

constraint).32

The left-hand side of expression (56) measures the equity benefits of a marginal dollar of subsidy

in j. It corresponds to the gross benefits of the subsidy, valued λ̄j for each resident of j, net of

the direct cost to finance it. These net benefits are multiplied by the number of recipients Lj . The

right-hand side of the expression measures the (indirect) fiscal cost of the subsidy that is generated

by the behavioral response to the subsidy sj : it triggers migrations, potentially in all locations i,

with movers typically changing their income tax payments. At the optimum, (56) says that equity

gains of spatial transfers are exactly offset by the corresponding fiscal costs.

Expression (56) provides a test of optimality of a system of spatial transfers, for a given set of

Pareto weights. Alternatively, the condition could be used to estimate the social preferences that

(best) correspond to an observed set of spatial transfers {sj}, an exercise in the spirit of Bourguignon

and Spadaro (2012) who estimate Pareto weights revealed by the income tax schedule. 33

Optimal Formulas under Parametric Restrictions The formula (56) characterizes the sys-

tem of optimal place-based subsidies. To make further progress and examine the form these sub-

sidies may take, one needs to impose more structure, for which we follow Ales and Sleet (2022),

augmented here with heterogeneous skills. Assume next that preference shocks are distributed

logit, identical for all skills, i.e. Fθ(εi) = exp {−(e−εi)}. Then, the migration responses to a shock

in j simplify to:=

∂Li (θ)

∂sj
= Lj (θ) (1i=j − Li (θ))u

′
j (cj (θ)) . (57)

In response to a positive subsidy shock in location j, individuals abandon other locations in pro-

portion to their size. Because the εi are iiid across space, a shock to one location does not lead to

particularly stronger reallocations away from or into any locations –all locations are equally close

substitutes. The optimal spatial subsidies can be solved out from (56) and simplify to:

si − t̄i =
λ̄i

u′i
− 1

u′i
, ∀i, (58)

where bars denote appropriately weighted averages of taxes or marginal utilities in a given loca-

tion.34 Equation (58) says that the optimal per-capita subsidy in i, net of fiscal revenues from the

income tax, increases with equity gains: it increases with the Pareto weight corresponding to the

32With µθ that depend on skill θ but not on shocks ε, these weights are λ̄j = 1
χ

∑
θ

Lj(θ)

Lj
µθu′

j (cj (θ)) .
33Expression (56) can be used to show that the laissez-faire equilibrium, without any transfers, maximizes social

welfare when weights equal inverse marginal utilities: µω = χ

u′
j(ω)(cj(ω)(θ))

, where j (ω) is the location of individual ω

in this equilibrium. Then, λ̄j = 1 and both the left- and right-hand side of (56) are zero.
34Specifically, t̄i =

∑
θ Li(θ)u

′
i(ci(θ))∑

θ Li(θ)u
′
i(ci(θ))

t (wi (θ)) is the average of the per capita income tax over skills in i, weighted

by their marginal utilities, and u′
i =

∑
θ Li(θ)

Li
u′
i (ci (θ)) is the average marginal utility of income in i, so that λ̄i

u′
i

=

1
χ

∑
θ

Li(θ)
Li

µθu′
i(ci(θ))∑

θ
Li(θ)
Li

u′
i(ci(θ))

is a measure of average Pareto weights in i.
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location and with marginal utility of consumption.

In the logit case, the optimal subsidy only varies across space because the equity motive does;

in contrast the cost of taxation is constant across space. Ales and Sleet (2022) consider alternative

specifications that capture more realistic variation in this efficiency cost of taxation. They consider

the separable mixed logit. There is no heterogeneity in skill. Individuals are characterized by addi-

tive Gumbel-distributed preference shocks and by another parameter that influences their utility,

but not their income. One can think of this parameter as modeling a systematic component of pref-

erences over locations across demographic groups. The preference shocks ε can be correlated within

demographic groups, as in the BLP model (Berry et al., 1995). This setup accommodates richer

substitution patterns between locations than the simple logit: a group might value an amenity

(e.g., sunshine) that is particularly present is some locations, treating them as high substitutes,

while another might value other dimensions (e.g., presence of an opera) so that these same locations

are poor substitutes in the eyes of the second group. With these richer substitution patterns, the

response to a subsidy in j is heterogenous across space, as it attracts more workers in locations

that are closer substitutes with location j. As a result, not only are optimal subsidies higher in

locations that yield high equity gains as in (58), but in addition subsidies are higher, all else equal,

in locations that happen to be substitute with locations that yield high equity gains.

4.3.2 Spatial Transfers Indexed on Income

With the lump-sum spatial subsidies considered so far, poor households of wealthy areas are

taxed to subsidize rich households of distressed areas. With redistributive goals in mind, it seems

intuitive that optimal transfers be indexed instead by both place and income. Gaubert et al.

(2024) tackle this question. To do so, they consider a planner that chooses an income tax schedule

optimally in each location.35 They derive the optimal non-linear income tax schedules for two

locations. Using numerical simulations, they quantify the corresponding place-based transfers and

show how they vary by income for various calibrations.

When sorting is generated entirely by heterogenous preferences for locations of different skills,

the optimal spatial transfer to the poorer region is done both through a large per-capita transfer

and through lower marginal income tax rates in this region. There are fewer high income workers

to tax there, so that high marginal tax rates, which are distortive, bring smaller benefits than in

the high income region. The whole non-linear tax schedule is shifted down in the poorer region.

When sorting is driven by comparative advantage in production, the direction of optimal trans-

fers depend on how mobile individuals are. When migration elasticities are low, place-based taxation

is similar qualitatively to the case above where sorting is driven by preferences alone. However,

when migration elasticities are larger, these patterns change, at least for higher incomes. They now

face higher marginal tax rates in the poor and low-productivity region, which incentivizes them to

35While we considered labor supply to be exogenous so far, labor supply is now endogenous hence responds to
the income tax. This is necessary to face a meaningful trade-off when devising the optimal income tax: it balances
equity gains (redistribution between income levels) with efficiency costs (disincentivizing labor supply).
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live in the productive location. The direction of optimal transfers changes and the richer region

may even be subsidized, on average. A takeaway is that in the presence of comparative advantage

the redistributive motive tends to dominate for lower incomes, which pushes towards redistribution

to lower incomes in poorer regions. For higher incomes, considerations of the efficiency cost of

taxation are more important and push towards lower taxes in the richer region . The mobility of

workers determines which forces dominate.

The analysis shows that the causes of spatial sorting as well as mobility responses at various

income levels impact the design of optimal spatial transfers. The drivers of spatial sorting and the

estimation of migration elasticities have been a point of focus in the literature. More empirical

research is needed on the possible heterogeneity by income level - rather than the averages the

literature typically focuses on - in the forces that drive optimal place-based redistribution: migration

responses, and causal effect of place on earnings. These are key for the efficiency cost of spatial

policies.

4.4 Normative Implications of Preference Shocks

Preference shocks for location (the εωj in equation (51)) lead to heterogeneous location choices of

individuals that are observationally identical. Besides their realism, these shocks were introduced

in the literature for tractability and to match empirical facts, as they help to rationalize elasticities

of labor mobility across space. Tabuchi and Thisse (2002) are an early example of this modeling

approach, which is currently ubiquitous in the quantitative spatial economics literature (Redding

and Rossi-Hansberg, 2017), including in analyses such as Ahlfeldt et al. (2015) and Diamond (2016).

A few methodological points related to these shocks are worth discussing.

4.4.1 Pitfalls of the Utilitarian Planner

As we have shown in this section, including heterogeneity across workers does not change the

conclusion from Section 2 that the competitive laissez-faire equilibrium is (absent externalities)

efficient: no policy intervention is required on efficiency grounds. This is true about preference

shocks as much as about other dimensions of heterogeneity often included in spatial research, such

as worker skill (e.g., Diamond, 2016) or place of birth (e.g., Bryan and Morten, 2019).

However, in contexts with heterogeneous preference shocks (the εωj in equation (51)), welfare

analysis is often conducted using a utilitarian social welfare function to aggregate across agents

with heterogeneous preferences, within a group of observable characteristics (such as skill or place

of birth). An issue with this practice is that a redistributive motive for government intervention

necessarily creeps in: aggregating via a utilitarian welfare function –or, for that matter, any specific

social welfare function– creates a ranking among different pareto-efficient allocations, and therefore

a rationale to implement spatial transfers in order to target one (arbitrary) point in the Pareto

frontier. As a consequence, in contexts where spatial policies may be justified on efficiency grounds

–both to target spillovers, as in Section 2, or to implement physical spatial investments, as in
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Section 5– the policy prescriptions from a utilitarian planner conflate efficiency considerations and

distributional concerns.36

To illustrate this issue, consider a simple example from Fajgelbaum and Gaubert, 2020: a

spatial economy with only labor in production, agglomeration effects, and idiosyncratic preferences

for location. Preference for location j of agent ω is uωj = cjε
ω
j , where consumption cj = wj+sj equals

the wage plus a place-specific subsidy, and where the wage wj = ZjL
γZ
j depends on fundamentals Zj

and population Lj through externalities with elasticity γZ . The utilitarian planner solves maxsj u ≡
E
[
maxj cjε

ω
j

]
, where the expectation denotes the integral over the realizations of εωj . Assuming εj

is Frechet, Pr
[
εωj < x

]
= exp

(
−x−1/σ

)
, this problem is equivalent to maxsj u subject to cjL

−σ
j = u

for all j. This structure is mathematically identical to Example 1 but conceptually different: the

parameter −σ stands in place of the amenity spillover elasticity γA to capture that the aggregate

(utilitarian) utility of residents in a location decreases as marginal agents select into a location.

From 22, the outcome of the utilitarian planner’s problem is a wage subsidy rate equal to γZ−σ
1+σ . This

policy combines efficiency considerations (entering through γZ) and redistributional considerations

(through σ). When γZ = 0, a utilitarian planner redistributes to low-productivity locations, where

marginal utility of consumption is higher.

In such context where agents have idiosyncratic preferences for location, how to define optimal

policies driven exclusively by efficiency without redistribution also influencing the policy prescrip-

tions is an open methodological question. One approach is simply to show robustness of policies

with respect to social welfare functions –it would be interesting to learn the extent to which qualita-

tive and quantitative features of optimal policies driven by efficiency vary with (arbitrarily chosen)

preferences for redistribution. Another option would be to carry a multi-dimensional object (the

distribution of welfare changes across groups) for policy evaluation. In this case, the outcome of a

planner problem would be a set of optimal policies, all of which bring the economy to the Pareto

frontier. Such a practice is standard when the groups are discrete and represent, for example, dif-

ferent skills (such as in Fajgelbaum and Gaubert, 2020 across skills) but has not been implemented

in the case of a continuum of preference shocks. Yet another approach could be to devise a way to

“purge” the welfare implications of counterfactuals from redistribution using decomposition such

as those in Donald et al. (2023).

4.4.2 Normative Implications of Non-Additive Taste Shocks

Except in special cases (see next subsection), non-additive taste shocks cannot be generically

identified in the data but affect the normative implications. We can see this in a simple example.

36The utilitarian welfare function also corresponds to the expected utility of individuals who are ex-ante identical
(before their taste shocks are realized), but value resources differently ex-post depending on their spatial choice
(driven by the shock realization). The optimal spatial transfers from this ex-ante problem are identical to those
we have derived in this section, but have a different interpretation: the laissez-faire allocation is interpreted as an
incomplete market allocations, and these spatial transfers as “insurance” again states of the world where one chooses
to live in a low income location (Mongey and Waugh, 2024). Formula (56) can in this case be seen as a J−choice
extension of the Bailey-Chetty formula that characterizes an optimal insurance policy with two states (employment
and unemployment) (Chetty, 2006), as pointed out by Davis and Gregory (2021) and Donald et al. (2023).
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Consider the simple utility function u (c+ εj) with u(.) increasing and concave, where {εj}j are

taste shocks. Individuals choose location j over location i whenever

εj − εi > wi − wj . (59)

The values of εi and εj separately play no role in observable choices. Therefore, these two shocks

cannot separately identified. However, separately identifying them is necessary for normative state-

ments.

We show this in an example. Consider two alternative models: (a) εj = 0 while εi is an

idiosyncratic shock with some positive variance; and (b) εi = 0 while εj is an idiosyncratic shock

with some positive variance. We next show these two models make opposite normative predictions

because they imply different rankings of social welfare weights
(
λi, λj

)
. In model (a), residents of i

have shocks εi ≥ wj −wi. Therefore, they have social welfare weights (under a utilitarian planner):

λi =
u′ (wi + εi)

χ
≤ u′ (wj)

χ
= λj ,

where the inequality stems from the concavity of u. In contrast, in model (b), residents of j have

shocks εj > wi − wj . Therefore, they have welfare weights:

λj =
u′ (wj + εj)

χ
<

u′ (wi)

χ
= λi.

In model (a), the planner wants to redistribute to j; while in model (b), she wants to redistribute

to i. That two models are observationally equivalent yet make opposite welfare prescriptions is

undesirable, a point made by Davis and Gregory (2021) and Gaubert et al. (2024). We chose a

particular non-additive example to make this point, but the concern is more general than in this

example. With additive taste shocks, however, this issue does not arise: conditional on rationalizing

a given set of location choices, the normative implications of the model are independent from the

distribution of the additive shock.

4.4.3 Multiplicative Frechet Shocks

A popular specification of utility, especially in quantitative spatial models (Redding and Rossi-

Hansberg, 2017) is a multiplicative specification: vω = maxj vjε
ω
j where there is a single skill, vj

is typically a Cobb Douglas utility function, and
{
εωj

}
are Frechet distributed taste shocks with

shape parameter κ (F (x) = exp [−x−κ] , x > 0). Using properties of the Frechet distribution,

migration is governed by:

1

Li

∂Lj

∂ci
= κ (1i=j − Lj)

v′i (c)

vi (c)
.

One can then directly verify that the optimal spatial transfer formula (56) leads to si =
1
κ

(
1
χ − vi(c)

v′i(c)

)
,

or, denoting ui = log vi ,

si =
1

κ

(
1

χ
− 1

u′i (c)

)
.
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Therefore, when the shape parameter is 1, this formula is identical to that of the logit case (58). This

result is not surprising. The two models are isomorphic, as can be seen through a log transformation

of utility.37 For this reason, the Frechet case is a knife-edge case such that, even if shocks are

multiplicative, the normative implications of the model are only dependent on observed location

choices like in the additive case.

5 Optimal Transport Networks

We turn to studying investments in transport infrastructure. We devote a separate section to

this spatial policy given the central role played by transport costs in spatial economics and because

they are studied using a distinct set of methods. Transport infrastructure is naturally one impor-

tant determinant of trade and mobility costs, with infrastructure impacting monetary, time, and

utility costs of goods transport and travel (Atkin and Donaldson, 2015; Bryan and Morten, 2019).

A large body of research examines the impact of actual or counterfactual improvements to these

transportation networks on economic outcomes (see review by Redding and Turner (2015) and

Donaldson (2024) in this handbook). The problem of characterizing optimal transport networks

is a priori challenging due to its high dimensionality, with improvements in one part of the trans-

port network affecting the entire system. We review recent papers in this literature that leverage

mathematical methods designed to manage this complexity, as well as some of the key findings.

We conclude with some suggestions for future research.

5.1 Background: Least-Cost Routes in Spatial Models

Real-world economies have complex transport sectors whose efficiency depends on infrastructure

and market structure. In quantitative spatial models, this complexity is usually not modeled, and

instead transport costs for goods or people are summarized by matrices of “iceberg” costs τij . For

one unit of a commodity from location i to arrive location j, τij > 1 units of that commodity must

be shipped, with the magnitude τij usually parametrized as a function of time, distance, or other

frictions (Head and Mayer, 2014). In commuting models, where networks transport people, iceberg

commuting costs are either direct utility costs (Ahlfeldt et al., 2015) or correspond to productive

hours lost (Dingel and Tintelnot, 2020). From now on, for readability, we use the terminology of

trade and shipping goods when laying out the model (rather than transporting passengers), but

these methods can be adapted to the latter case.

Before thinking about optimal infrastructure investment, a preliminary step is to conceptualize

how the spatial distribution of infrastructure affects the transport costs τij . In the models that are

typically used, goods are shipped on a network defined by a graph. The graph consists of a set of

nodes that represent locations where production and consumption take place or where goods may

be just in transit; as well as a set of links (or edges) connecting the nodes. For each node j there is

37Denote uω = log vω = maxi ui + log εωi . Given that the logarithm of a Frechet distribution is a Gumbel
distribution, this model is the logit model described above.
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a set of “neighboring” nodes N (j) that are connected to j via a link. The connected nodes need

not be actual neighbors in a geographical sense, and their definition depends on the application.

Transporting goods from j to k ∈ N (j) entails a cost tjk, so that 1 + tjk units must be shipped

from j for one to arrive in k. Goods can only be transported from j to i /∈ N (j) through a route

r of connected nodes. The corresponding cost from j to i is the product of the individual iceberg

costs corresponding to all the links on the route r. The chosen route from j to i is selected from

the set Rij of all possible routes connecting j and i to minimize the “long-distance” iceberg cost:38

τji = min
r∈Rji

∏
(kl)∈r

(1 + tkl) . (60)

Expression (60) captures how improvements to a transport network –both small such as im-

proving a railroad link or large such as a new highway– affect the matrix of bilateral trade costs τji.

When a set of links is improved, τji falls for origin-destination pairs that use the improved links,

including both origin-destination pairs that already used those links before the improvement and

pairs that switch to using them after.

Mathematically, finding τji and the corresponding route on a given graph is called the least-cost

route problem. It is a special case in a broader class of “optimal transport problems” for which

solution methods have been developed (Galichon (2016) provides a textbook introduction).39 For

economists using these tools, the key practical takeaway is the duality approach to numerically solv-

ing these problems. When applicable (which depends on the convexity of the planner’s problem),

duality reduces the problem’s dimensionality by shifting the problem from optimizing over possible

routes –usually a huge space– to optimizing over the shadow value of commodities at each node, a

much smaller space. These values characterize the direction and intensity of trades: commodities

flow from locations where they have lower shadow value to locations with higher shadow value.40

Powerful off-the-shelf optimization algorithms are available and used by standard numerical solvers

to quickly solve the least-cost route problem (60) and more complex optimal transport problems

(Bertsekas (1998) reviews a range of methods).41

Least-cost route problems have been introduced in quantitative spatial models to study the

effects of specific transportation improvements in a network. Among the best known and earliest

studies in this spirit is Donaldson (2018), who studies the impact of 19th century railroad growth

in India. He uses a quantitative trade model where iceberg costs are parametrized as function of

lowest-cost routes chosen by shippers with access to alternative transport modes in each link, with

38This formulation assumes link-level iceberg costs, with the link-level tjk often parametrized as a function of time
in transit and other frictions from j to k. An alternative formulation that is also often used defines tij as an additive
cost, with the optimal route minimizing total cost (rij = argminr∈Rij

∑
(kl)∈r tjk) and the “long-distance” iceberg

cost τij defined as some function of the minimized total cost.
39Despite their name, these methods tackle problems that are not limited to physical transportation. They more

generally tackle how different entities or agents (like workers and jobs) should be matched in a way that maximizes
the net payoffs.

40Intuitively, even if no actual trade occurs from the perspective of an agent in the economic model solving the
least-cost route problem, the solution to this problem can be interpreted as that of a sequence of competitive agents
buying goods in each node and reselling at the connecting nodes that pay the highest value net of the shipping cost.

41For example, the “distances” command in Matlab quickly computes least cost routes among sets of origins and
destinations on a graph.

46



mode-specific costs chosen to match observed price gaps. Allen and Arkolakis (2014) simulate the

economic impact of the Interstate Highway System in the U.S. by modeling transport costs by car

as a function of the shortest distance by road between locations.

5.2 Optimal Transport in a Spatial Equilibrium Model

Armed with the tractability of the least-cost route problem, one could hope to use it to tackle

the optimal network problem. Broadly speaking, the optimal network problem consists of finding

the optimal distribution of link-level transport costs tkl from a feasible set (typically determined by

a government budget constraint). However, optimizing directly over tkl is not necessarily tractable

because of the dimensionality of the problem (corresponding to the number of links) and the

potential non-convexity of a planner’s problem over tkl. Fajgelbaum and Schaal (2020) show a way

to tackle this optimal network problem. We follow their approach here.

We consider the same spatial equilibrium with multiple goods k and trade frictions as in Section

3.1. Assuming iceberg trade costs at the link level, when
(
1 + tkji

)
Qk

ji units of product k are shipped

from j to a connected neighbor i ∈ N (j) then Qk
ji units arrive in i. The only difference with respect

to the framework in Section 3.1 is that now the trade cost tkij on each link is endogenous. It is

decreasing in the corresponding trade flow Qk
ji, capturing congestion (more flows on a link increase

travel time given infrastructure), and it is increasing in the amount of infrastructure invested on

the link, Iji (more lanes of road decrease travel times given trade flows).

The objective of the planner is to maximize welfare by choosing how to invest in transport

infrastructure, Iij . It is instructive to break down the optimization problem in two parts and

first treat infrastructure Iji as given. Given infrastructure, the planner chooses the allocation to

maximize utility, as summarized in the Lagrangian:

L =u−
∑
j

ωj

[
u− uj

({
ckj

}
, Lj

)]
−
∑
j

Wj

[∑
k

Nj − zj (Lj)Lj

]
− Ω

∑
j

Lj − L


−
∑
j

∑
k

pkj

ckjLj +
∑
l

X lk
j +

∑
i∈N (j)

(
1 + tkji

(
Qk

ji, Iji

))
Qk

ji − Y k
j

(
Nk

j ,
{
Xkl

j

}
l

)
−
∑

i∈N (j)

Qk
ij

 .

(61)

This problem, without congestion, is the same as in Section 3.1. In that section, we characterized the

optimal population allocation given the flows. Here, we characterize in addition the optimal flows

entering in the second line. This constraint captures goods availability per node –the “conservation

of flows” constraint. A quantity Y k
j +

∑
i∈N (j)Q

k
ij of type k goods (production plus exports to

neighbors) is available at j, ckjLj+
∑

l X
lk
j is domestically absorbed, and

∑
i∈N (j) tjiQ

k
ji is reshipped.

The multiplier of this constraint, pkj , is the shadow value of good k at j: in an efficient market

allocation, this is the price of good k at j.

The sub-problem of finding the optimal Qk
ji conditional on ckj , Lj , Y

k
j while treating tkji as ex-

ogenous is an optimal transport problem, similar to the least-cost route problem discussed above.
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Here, however, elementary trade costs tkji are endogenous. With congestion, production and con-

sumption feed back into trade costs and impact the choice of a least-cost route.42 The first-order

conditions of (61) with respect to Qk
ji yield:

pki
pkj

≤ 1 + tkji +
∂tkji

∂Qk
ji

Qk
ji, (62)

with equality if Qk
ji > 0. This is a no-arbitrage condition: the price differential between a location

and its connected neighbors must be less than or equal to the marginal transport cost. From the

planner’s perspective, this marginal cost takes into account the average cost 1+ tkji and diminishing

returns from congestion. The market allocation may not internalize this congestion, in which case

optimal shipping is implemented with congestion taxes. We highlight below some cases in the

literature where the market allocation does not satisfy optimal congestion, as well as recent papers

focused on implementing optimal congestion taxes. Inverting this conditions yields trade flows Qk
ji

as a function of price differentials
pki
pkj
.

Solving the problem (61) yields u∗ ({Iji}), the maximal level of utility that can be attained given

the infrastructure network Iji. The next step is to solve for the optimal distribution of infrastructure

investment Iji given a resource constraint. A natural modeling question at this stage concerns the

technology to produce infrastructure. There is no formal obstacle to modeling Iji as the output

of a sector that uses fixed factors and tradeables.43 However, implementation and exposition are

simplified when Iji is a homogeneous input that can be only be used for infrastructure, with fixed

total endowment K. The cost of building Iji units of infrastructure (e.g., lanes of road) on a link

ji is δIjiIji units of the homogenous input. The parameter δIji captures that building infrastructure

is more costly in some locations. The final network optimization problem is then:

max
{Iji}

u∗ ({Iji}) subject to
∑
j

∑
i∈N (j)

δIjiIji ≤K. (63)

Using envelope conditions from (61), the first-order condition over Iji yields:

ΓI
ji ≡

(∑
k

pkjQ
k
ji

)(
−
∂tkji
∂Iji

)
≤︸ ︷︷ ︸

Marginal Gain from Infrastructure

δIjiPK︸ ︷︷ ︸
Marginal Building Cost

, (64)

where PK is the shadow cost of the budget constraint in (63), corresponding to the price of K in an

42The Armington model with product differentiation by origin within sectors, commonly used in quantitative
spatial models, is a special case when each commodity k is produced in only one location. In that case, the solution
to the least-cost route is implemented independently from the solution to the economic allocation because there is
no feedback between optimal transport and economic activity. As a result, the vast majority of quantitative spatial
models, even those applied to infrastructure, do not explicitly define the conservation of flows constraint in the second
line of 61. Instead, these models are cast with τij (the “long-distance” iceberg cost) as a primitive, with this cost
already representing the solution to the least-cost route, as we have mentioned. Outside of Armington, when identical
goods are produced in multiple locations, the optimal transport problem must solve for the assignment between
producers and consumers within a commodity. Recent studies applied to agricultural markets with homogeneous
goods, such as in Sotelo (2020) and Bergquist et al. (2022), have this feature. Castro-Vincenzi (2022) solves an
optimal transport problem to characterize the assignment of products to export platforms within a firm.

43For example, the tradeoff between using land for infrastructure or for consumption is at the heart of early
thinking about optimal transport investments; see the discussion in Henderson (1977).
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efficient market allocation where production of infrastructure is decentralized and K is commonly

owned across individuals. Equation (64) holds with equality on links with actual investment (Iji >

0) at the optimum. The marginal gain from infrastructure, ΓI
ji in the left-hand side, is a familiar

expression in trade models, dating back to at least Fogel (1964): the marginal benefit from a

reduction in trade cost equals the value of trade directly exposed to the trade cost reduction, times

the trade cost reduction.44 Similar to Hulten (1978), a technology shock (in this case, to the

trading technology) affects aggregate welfare only through the gross value of commodities affected

by a shock, and regardless of the input-output structure of the economy.

Substituting the solution for Qk
ji as a function of the price differentials pnk/p

n
j from (62) into

(64) implies that the optimal infrastructure Iji between locations j and i is, like the trade flows,

only a function of prices these two locations. Expressing both Iji and Qk
ji as function of prices

allows to compute the solution of the problem using efficient numerical solutions relying on duality,

as in as the optimal transport literature. Formally, letting L (x,λ) denote the Lagrangian of

the full problem (combining (61) and (63)), where x denotes the control variables (consumption,

population, trade flows, infrastructure) and where λ denotes the Lagrange multipliers (i.e., shadow

prices) of the combined problem, the dual solves: inf
λ≥0

sup
x

L (x,λ), a minimization over node-level

prices subject to non-negativity constraints.

An important caveat, however, is that for this problem to be numerically tractable and guar-

anteed to yield a global optimum using standard solvers, the full planner’s problem must be a

convex optimization problem. In addition to the concavity conditions on the spillovers discussed in

Sections 2 and 3, convex optimization here also requires the link-level shipping costs tjk (Q, I) to

be a convex function of both Q and I. If shipping costs are convex in Q only, the (61) subproblem

can be solved using the dual but non-convex optimization methods must be used for (63).

To get an example of a solution to the whole optimal network problem, assume a power function

for trade costs:

tkji (Q, I) = δτjik
Qβ

Iγ
. (65)

In this case, tjk (Q, I) is a convex function of both Q and I when β > γ, i.e., when congestion

due to transport β offsets the increasing returns inherent to optimizing over the network. The

optimal transport problem embedded in (61) is convex as long as there is congestion, β > 0. To

get intuition on the solution, we assume further that only one commodity flows from j to k. Then,

(omitting superscripts that denote commodities) the optimal infrastructure investment on ij is

I∗ji = κI

 1

δIji

(
δτji

) 1
β

(
pj

(
pi
pj

− 1

) 1+β
β

)
β

β−γ

, (66)

where the κI is a constant. Condition (66) reveals determinants of optimal investments. Assuming

decreasing returns to the transport sector (β > γ), (66) dictates lower investments in locations

44This condition hinges on the iceberg trade cost assumption; more generally, the benefits would equal the value
of resources used to ship the trade flow affected by the cost reduction.
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with greater natural barriers to trade or invest (greater δIji or δ
τ
ji). Conditional on these frictions,

investments should be larger in links with higher price differentials, as those differentials call for

more equilibrium trade, and therefore more benefits to investing. Conditional on price differentials,

investments are larger in links departing from more expensive origins, as these are origins where

goods are socially more valuable. The condition also implies that the dispersion of infrastructure

across space is magnified when β−γ is low, as in this case the transport sector has weak decreasing

returns scale.

5.3 Improving Transport Networks: Quantification Approaches

This section discusses recent research that has quantified the benefits of transportation im-

provement in complex transport networks. The discussion is broadly structured around methods,

and along the way we highlight the more substantive issues addressed in the applications.

5.3.1 Marginal Benefits by Link

A interesting object for policy is the quantification of the marginal benefits of improving different

links in the transport network. In the framework above, it is summarized by ΓI
ji in equation (64).

A key challenge in measuring ΓI
ji is that trade flows at the level of individual links, pkjQ

k
ji, are

not generally observed in standard trade datasets. A possible solution is to use data on vehicle

flows as a proxy for trade, as in Allen and Arkolakis (2022) for highways or Heiland et al. (2019)

and Do et al. (2024) for sea transport. Another strategy to measure pkjQ
k
ji is to obtain them from

the solution of the transport problem (61) given infrastructure. Fajgelbaum and Schaal (2020)

parametrize that problem to match a cross-sectional distribution of economic activity, generating

pkjQ
k
ji as a by-product.

Allen and Arkolakis (2022) calculate the marginal benefit of improving each link of the U.S.

Interstate Highway Network using an Armington trade model with labor mobility and external

agglomeration and congestion effects, as in Allen and Arkolakis (2014). Exports Xkl from a pro-

duction origin k to a final destination l are done by a continuum of traders that evenly split the

value of trade, each one receiving idiosyncratic extreme-value preference shocks over each possible

route. As a result every possible route is used, with smaller probability on longer routes. This

assumption yields a closed-form solution for the fraction of the trade flow value Xkl from k to l

that crosses link ji:

pkjQ
k
ji

Xkl
=

(
τkl

τkjtjiτil

)θ

, (67)

where the τkl also is a closed-form function of the full matrix of link-level costs tkl. In addition,

congestion at the level of each link is modeled for tractability as function of the value rather the

volume of trade through a link. In their implementation, Allen and Arkolakis (2022) represent the

U.S. trade network as a graph where the nodes are the major highways intersections, aggregated

to broader statistical areas. They use data on traffic between these areas and assume that traffic

flows are linear in trade value to get a proxy for link-level trade. They parameterize the trade
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costs function tkji as a function of number of lanes of road and traffic flows, and the costs δIji
as a dollar-equivalent cost of observed lane-miles. Given the structure of the model, they can

use these measures to compute counterfactual outcomes following specific link-by-link investments.

Consistent with the first-order intuition from ΓI
ji in (64), they find the highest-traffic segments

to be typically those with higher marginal benefits to invest. They find large variance in returns

across link but also, on average, a positive and large rate of return of investing in the U.S. highway

system, with benefit-cost ratios well above 1, a result that stands in contrast with calculations from

Duranton et al. (2020) using a more aggregate model and different data sources.

Brancaccio et al. (2024) study the welfare impacts of investments in U.S. ports by computing

the gains from a small expansion of capacity in each port. The model is different from those

in the quantitative spatial literature: it explicitly models the demand and supply of transport

systems rather than assuming iceberg trade costs; however, the model only accounts for the partial

equilibrium effect of these improvements. Brancaccio et al. (2024) estimate port-level efficiency in

supplying port services (measured as vessel waiting time) using a queuing model where waiting

times depend on labor and capital inputs at the port. When a port capacity expands, traders

reallocate their shipments across ports and the whole distribution of waitings times changes. They

find large impacts of port expansion on trade and welfare, with 20% of those benefits stemming

from indirect congestion reductions across the system, and positive net returns from expanding

capacity at the margin in about one-third of U.S. ports.

5.3.2 Globally Optimal (Road) Networks

Computing the impacts of relatively small investments “link-by-link”, as described above, gives

a sense of what are the returns to the next dollar injected to the system. However, this approach

does not give the solution to the global investment problem (63). It could be that improvements

that should be prioritized according to the link-by-link criterion are different from the most relevant

ones when considering larger investments, or from investments that impact several segments of the

system simultaneously.

Fajgelbaum and Schaal (2020) quantify the global solution to (61) and (63) and apply to the Eu-

ropean road network. The nodes are population centroids of one-degree cells and the links connect

neighboring cells. The fundamentals of (61) (i.e., productivities and amenities) are parameterized

such that the solution to (61) matches population and value added across these cells, given observed

Iji measured by the dollar value of existing roads. The link-level trade costs tkji match internal trade

within a country and the building cost δIji is taken from World Bank road infrastructure projects

(Collier et al., 2016). The crucial values of β and γ in (65) are taken from Couture et al. (2018),

who estimate the relationship between speed, number of vehicles, and the number of lanes on a

road. Assuming that trade costs τkji and traffic are respectively proportional to shipping time and

shipments, their estimates imply β > γ, the convex region of the parameter space. Across 24

European countries, Fajgelbaum and Schaal (2020) compute the optimal Iij (a free reallocation of

the network) and optimal expansions. The former provides an efficient benchmark against which
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to gauge the existing network. They find welfare losses of 1.8% on average due to misallocation

of roads, a roughly similar magnitude to the gross benefit from optimally expanding current road

networks by 50%. Within countries, the optimal network investments tend to reallocate activity in

poorer regions, reflecting that aggregate utility increases by reducing differences in marginal utility

of consumption across locations.

Gorton and Ianchovichina (2022) and Graff (2024) apply similar methods to quantify optimal

road networks across the majority of Latin American countries respectively, with average losses of

1.3% and 1.6% percent. The numbers are not directly comparable across these studies due to dif-

ferences in implementation details, but the results seem to point to a similar order of magnitude for

misallocation across levels of developments, on average. However, the most extremely misallocated

countries appear to be in Africa (such as Somalia and Sudan, with losses around 6-7%). African

countries also present high returns to an optimal expansion of their road networks (on average,

0.8% welfare gains from a 10% optimal expansion of their road networks). These papers compute

optimal networks within countries, which biases towards finding misallocation near borders when

routes facilitate international trade. Krantz (2024) explores how optimal road network expansions

across the 47 largest cities and ports in Africa depends on the size of the expansion and key model

elasticities such as product differentiation and congestion.

5.3.3 Non-Convex Network Optimization

Two features are necessary to make the network investment problem (63) a convex optimization

problem. First, it requires strong enough congestion in transport, the condition β > γ that ensures

convexity in specification (65). This condition fails without congestion, i.e. β = 0, a common

assumption in trade models. Second, the problem may also be non-convex if spatial spillovers,

of the kind discussed in Section 2, are not internalized by the planner. When the optimization

problem is non-convex, standard global search algorithms find local optima but are not guaranteed

to identify a global solution. To explore the model properties outside of the convexity region,

Fajgelbaum and Schaal (2020) repeat their exercises on European countries assuming that β < γ.

Their numerical global search algorithms are still aided by the use of the dual to solve for (61).

In this region of the parameter space, the gains from optimal investments and the losses from

misallocation are larger (although with a similar ranking across countries), and within-country

patterns of optimal investments are more concentrated in fewer links.

Various papers, such as Blouri and Ehrlich (2020), Santamaria (2022), and Bordeu (2023),

study such non-convex problems by incorporating market-clearing conditions as additional restric-

tions when solving (63) rather than solving (61) from a planner problem. An equivalent approach

in Fajgelbaum and Schaal (2020) is to solve for (61) using a planner that take agglomeration effects

as given. Santamaria (2022) in particular solves for the optimal road network in a spatial equi-

librium model with monopolistic competition and trade frictions (Krugman, 1980), which in the

context of (61) and (63) corresponds to an Armington trade model with efficiency spillovers and

no congestion (β = 0). She calibrates the initial equilibrium to West Germany in 1950, after the
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division following the Second World War, and computes the optimal highways for West Germany.

She uses optimization algorithms that search locally starting from the initial network available to

West German planners right after the division and argues that, despite the global problem being

non-convex, starting the algorithm around the observed network in 1950 will likely identify a close

local optimum that was reasonably targeted by planners. This approach echoes the idea, in Ahlfeldt

et al. (2015), of searching for a new equilibrium after a shock around the initial equilibrium when

there are potentially multiple market equilibria. This approach is intuitive but no formal statement

rationalizes it, and it implicitly assumes that the dynamic process of network optimization in the

real world mimics the iterative steps of the numerical solver.

A third key feature making (63) a convex optimization problem is that the Iji are treated as

a continuous variable denoting the intensity of infrastructure investment, rather than as binary or

discrete. However, it may be natural to think about whether a particular set of locations or nodes

is connected at all. In the parameterization (65), because of Inada conditions, a non-zero level of

infrastructure in every link is optimal. Allowing for zero optimal infrastructure on a link necessitates

either an alternative functional form than (65), or to model Iji as binary rather than continuous.

A binary Iji gives rise to a discrete optimization problem over a huge space (with dimension equal

to 2 to a power equal to the number of links) and precludes using standard calculus and continuous

numerical solvers. Existing algorithms that help solving discrete choice problems following Tarski

(1955) (such as Jia (2008) or Arkolakis and Eckert (2017)) do not readily apply to this case, as

they rely on properties of investments across links that do not hold here.

Fajgelbaum et al. (2023), studying California’s High Speed Rail, computes the optimal place-

ment of rail stations along railway lines in a framework where travelers may use different modes of

transport. Specifically, they optimize over the location of the 24 stations of California’s High-Speed

Rail. Rather than asking whether each node of the railway line should host one of the 24 stations

(a high dimensional combinatorial problem), they parametrize the station placement problem as

a continuous choice over geographic coordinates for each station. Their optimization problem re-

mains non-convex, but can be solved using numerical methods with continuous choice. They rely on

the fact that transport engineers predetermined the feasible routes linking Northern and Southern

California, sidestepping the route design problem in their optimization. In principle, optimization

over the geographic coordinates of connected nodes could be used to fully characterize a transport

network in more general cases, as long as it is combined with a criterion for the placement of links.

Standard cost-minimization criteria (such as least-cost-spanning trees) are good candidates for the

latter, as they have been found to rationalize observed transport investments well (see Faber (2014)

for China).

Alder (2016) and Kreindler et al. (2023) consider the optimization of transport networks with

binary choices on each link. In the context of a gravity trade model, Alder (2016) proposes a

heuristic algorithm and applies it to study the efficiency of Indian roads. His algorithm starts

from a fully connected network and, at each iteration, removes the least beneficial link or adds

the most beneficial one. He shows that an optimal network constrained to connecting middle-size
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cities, which resembles features of the Chinese road networks, would have outperformed the large

road expansions observed in India. Kreindler et al. (2023) solve the problem of designing optimal

bus routes and their frequency in a partial equilibrium model with inattentive consumers and

applies it to Jakarta’s transit system. The planner receives an idiosyncratic preference shock εN for

each possible network N and chooses N∗ (ε) = maxN W (N) + εN . Standard methods allow them

to draw a random sample from the distribution of N∗ (ε). This distribution degenerates to the

global optimum that solves maxN W (N) as the variance of εN vanishes (at the cost of increasing

computation times). This approach allows them to quickly compute how an expected feature of

the optimal network (across realizations of ε) changes to a first order when parameters change.

Their method seems particularly fruitful for applications where the goal is to understand this type

of comparative statics, which are more costly to compute in the non-probabilistic approach.

5.4 Determinants of Inefficient Investments

The papers we have reviewed here invariantly conclude that observed networks are inefficient,

meaning that the observed networks could be reconfigured in welfare-enhancing ways. The litera-

ture has put forward various potential explanations for apparent misallocation: path dependency,

political preferences, mismeasured investments costs, and decentralized network design.

A natural explanation for the apparent misallocation of transport networks is that economic

fundamentals or planners’ preferences change at higher frequency than transport networks, which

are path-dependent investments. Therefore, networks are designed in a given time period may

look inefficient later on. The frameworks we have reviewed can be used to assess this type of

path-dependency. Santamaria (2022) calculates that the optimal West German highway network

in 1974 would have been quite different from an optimal expansion from 1950 to 1974 (constrained

by the pre-division network), resulting in 20% larger optimal gains. Graff (2024) finds that areas

in Africa that a century ago received more railroad investments tend to have too many roads

today. Santamaria (2022) finds high correlation between actual expansions of German highways

after division and model-predicted optimal investments, and Graff (2024) find that the modern road

network in Germany has small levels of misallocation. These finding could suggest that German

planners are efficient and that the four-fold increase of the road network since reunification has

erased the historical legacy. Alternatively, it could be that historical roads were not inefficiently

located from the perspective of the reunified country.

A second explanation for the apparent inefficiency of transport investments is that planners’ ob-

jective functions may not correspond to the national planners maximizing aggregate welfare that is

typically assumed. The empirical evidence suggests there is high political discretion behind trans-

portation investments, heightened in non-democratic contexts (Burgess et al., 2015; Voigtländer

and Voth, 2014). In democratic environments, transport investments may be geared at maximizing

political approval rather than aggregate income. Fajgelbaum et al. (2023) use the case study of

California’s High Speed Rail to estimate the political preferences of a hypothetical social planner

who chose the placement of rail stations. They take advantage of the fact that the project was
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submitted for approval through a popular vote. Using voting data, they estimate a significant

elasticity of local votes to the potential economic impacts of the project, as predicted by a quan-

titative model of commuting and long-distance travel. Then, they compare the actual design of

California’s High Speed rail with counterfactual station placements that were not adopted to ob-

tain bounds on the planner’s preferences over different demographics and over political approval.

Their estimates imply strong planner’s preferences for gaining votes. Solving for the counterfactual

“apolitical” network, they find that political preferences drove the network design away from large

urban centers, where it would have been hard to gain additional votes given the strong political

preferences of local voters for the train already. Across Chinese counties, Alder and Kondo (2020)

show a correlation between road over-investment calculated using the Alder (2016) framework and

political influence proxied by the birthplace of government officials.

A third general reason is misspecification of infrastructure investment costs, which are often

modeled in simple ways to enhance tractability. One can always choose costs that rationalize

observed networks as being efficient, an approach that Fajgelbaum and Schaal (2020) propose to

simulate optimal expansions. The evidence on misallocation usually persists under the range of

cost measures used in the literature, including information on actual road projects Fajgelbaum and

Schaal (2020), public agency guidelines (Allen and Arkolakis, 2022), or cost function estimation

(Brancaccio et al., 2024). Sorin (2024) demonstrates the importance of institutions governing public

land acquisitions for infrastructure, such as eminent domain, in driving optimal road investments

in a developing country context.

A final possible explanation is that infrastructure misallocation may result from the choice of

local rather than central planners. Mohring and Harwitz (1962) show that developers who charge

tolls equal to the optimal congestion taxes implement the optimal infrastructure investment, a re-

sult that Fajgelbaum and Schaal (2020) generalize to the context of network investments in (63)

if developers take prices as given. Outside this market structure, infrastructure investments of

competing governments or of developers who can manipulate market outcomes are generically inef-

ficient. Felbermayr and Tarasov (2022) study investments of competing planners in a trade model

on a linear geography. Bordeu (2023) studies road investments of neighboring municipalities in

Chile, highlighting inefficiencies that arise from the lack of coordination between municipalities,

and Chen (2024) embeds an oligopoly model into the optimal transport model to study the invest-

ments made by 19th century US railroad companies. Inefficiencies arise as their objective functions

may not coincide with welfare.

5.5 Optimal Frequency and Congestion Policies

Rather than studying the optimal spatial distribution of local transport investments, another

strand of research studies the allocation of transport systems at more aggregate levels, as well

network-wide pricing or tax policies to deal with congestion externalities. These papers often

abstract from general equilibrium interactions or optimal routing which are a focus of quantitative

spatial models. However, in order to design optimal policies, these papers quantify in greater
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detail the transport choices made by commuters and the supply of transportation services made by

private and public agents. Moreover, they rely on detailed micro datasets to estimate heterogeneity

in traveler preferences or in the production function of the transport sector, using techniques from

industrial organization.

The value of waiting times and travel times takes center stage in this research. The estimation

of the welfare value of time is a key input to compute optimal policies, recognizing that these times

are endogenous to the decentralized decisions of both travelers and service providers. Hence, these

papers bring to the forefront some classic themes in transport economics, such as travel demand

estimation (McFadden, 1974) and scale economies of transport providers (Mohring, 1972), in order

to compute optimal investments (for a textbook treatment see Small and Verhoef, 2007).

Almagro et al. (2024) and Barwick et al. (2021) estimate models where households choose their

mode of travel in the presence of queuing and congestion. In Barwick et al. (2021), households

choose residence and commuting mode. Their location choice affects house prices and commuting

speed through congestion. The paper analyzes congestion pricing, driving restrictions and transport

expansion in Beijing. In Almagro et al. (2024), household location is fixed and households choose

their travel mode subject to congestion externalities. They characterize the optimal frequency

and pricing of public transit options in Chicago. Conwell (2023) estimates optimal subsidies to

suppliers of minibuses who do not internalize their impacts on waiting times. In these frameworks,

congestion externalities are a function of city aggregates or numbers of commuters by residence-

workplace pair, hence optimal congestion taxes can be computed using the approach we laid out

in Section 3.5. Hierons (2024) uses optimal transport tools to incorporate the network structure of

the transport network, so that congestion is defined on a link of a transport network and depends

on gross travelers through that link. Brancaccio et al. (2023) studies optimal subsidy schemes in

decentralized transport markets with search externalities, and Kreindler (2024) studies effectiveness

of peak-hour congestion pricing.

These papers complement the quantitative spatial frameworks we have described in both method

and focus. There could be exciting research avenues from further combining the tools and questions.

For instance, network interactions can impact congestion policies; these policies may be more

effective when targeted to specific segments of the network. Kreindler (2024) combines elements

from both strands by solving the problem of optimal routes and service frequency in a context

where passengers care differentially about travel and waiting times. Likewise, spatial models could

benefit from the richer consumer choice features of this strand research. Fajgelbaum et al. (2023)

go in this direction by introducing modal choice and estimating the heterogeneous preferences of

different demographics groups over modes of travel. The spatial distribution of these demographic

groups ends up being an important determinant of optimal network design.

5.6 Future Research

This section reviewed a recent body of work that models and quantifies optimal transport

investments. These models can be useful to provide efficient benchmarks to measure potential
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misallocation of actual transport networks and their expansion. The analysis and quantification of

optimal transport models can also provide insights on pressing policy tradeoffs. Using statistics on

transportation spending and usage in the U.S., Duranton et al. (2020) argue that large-scale expan-

sions of the country’s transport infrastructure may not be fully warranted, and that reallocating

investments across different modes of transport could offer higher returns. The methods review

here can help inform this type of debate.

A number of important themes are so far absent from the literature. Transport investments

are highly persistent, yet the current methods ignore dynamic tradeoffs and uncertainty. Sunk

investments that will unfold slowly over time do not necessarily determine optimal networks that

look in the steady state like the static optimal networks. In a growing economy, optimal investments

should foresee the importance of certain regions in the future. Many current policy debates concern

resilience of supply chains to unexpected shocks and ways to protect against increasing climate

hazards. Arguably, investment in transport networks should trade-off the reasons to invest that

maximize static welfare against ways to minimize impacts of future risk. These topics have so far

not been explored.

The literature also does not pay much attention to the idea of optimal transport investments

geared towards development. A classic idea from new economic geography models is that regional

development is highly uneven due to agglomeration, with trade costs largely determining whether

the economy operates in a multiplicity region. The local returns to transport investments in this

context may be highly convex. A related issue concerns the complementarity between the optimal

investments we have studied in this section and the optimal transfers we studied in previous sections.

Some of the approaches we have reviewed simultaneously consider optimal transport investments

and optimal spatial transfers, while others assume that the former are implemented but not the

latter. A better understanding is lacking of the different prescriptions of these two approaches, and

of when they are more appropriate to guide optimal investments.

In more practical terms, the applications in the literature focus overwhelmingly on road in-

vestments or urban policies concerning road transport, with few cases studying railroads or ports.

Analysis of air transport and, more generally, analyses of optimal investments that account for

inter-modality are also lacking.

6 Conclusion

In this chapter we discussed optimal spatial policies in spatial equilibrium models. Our emphasis

has been on general equilibrium: determining whether a policy that affects a specific location is

optimal cannot be done in isolation by focusing only on the returns to that location. Instead, an

equilibrium model is required to assess the shadow cost of resources reallocated to a given region, i.e.,

to measure the next-best use of these resources in the rest of the economy. Empirical studies that

demonstrate positive net returns to a policy do not fully determine whether the policy is desirable

unless they account for this shadow cost. We showed how to conduct this measurement in standard
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models. Our analysis focused on three topics. First, we reviewed place-specific policies such as

taxes and subsidies aimed at reallocating workers to address spillovers from urban agglomeration.

This was done across a range of models, including canonical urban frameworks and more complex

quantitative spatial models. Second, we examined spatial transfers in contexts without spillovers,

where the market allocation is Pareto efficient, but where social preferences for redistribution justify

spatial redistribution even in the presence of personal income taxes. Third, we discussed optimal

transport investments using methods that account for the optimal routing and network structure

of the economy.

Our analysis was limited to topics which have received relatively more attention in recent

years. Current work is deploying related quantitative spatial models, often in combination with

elements from other fields in economics such as industrial organization and development economics,

to quantify policies across a range of pressing issues that feature spatial tradeoffs. Recent topics

include the allocation of medical facilities in contexts where accessing these facilities is costly

(Agte, 2024; Dingel et al., 2023; Hsiao, 2022); the location of schools and educational investments

in contexts where the access is costly and the returns to these investments depend on student

composition (Agostinelli et al., 2024; Eckert and Kleineberg, 2024); policies that affect exposure to

environmental risk, such as zoning laws (Ospital, 2022), building regulations (Ostriker and Russo,

2022), local taxes (Aronoff and Rafey, 2023), or transport investments (Balboni, 2019); local carbon

taxes (Conte et al., 2022); investments in renewable technologies (Arkolakis and Walsh, 2023; Colas

and Salumier, 2023); or lockdown policies (Fajgelbaum et al., 2021; Giannone et al., 2022). Many

studies limit the analysis to the impacts of specific policies that have been implemented or that are

in the process of being implemented. The tools described in this chapter could be used to further

advance the analysis of these pressing issues from a normative perspective.
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A Appendix to Section 2 (Efficient Spatial Allocation)

A.1 Allocations are characterized by {cj}

From (3), population in a location is an implicit function of consumption in that location and

utility, such that uj

(
cj ,

Hj

Lj
, Lj

)
= u. Call it L̃j (cj , u) . Replacing L̃j (cj , u) in (4), and further using

hj =
Hj

Lj
and Nj = zj (Lj)Lj from (5) and (6) gives an implicit solution for utility as function of the

distribution of consumption that we denote ũ ({cj}). Attainable levels of utility in this economy

are then given by any combination of {cj} consistent with aggregate labor market clearing (7),∑
i L̃j (cj , ũ ({cj})) = L.

A.2 Appendix to (2.3) (Welfare-Increasing Reallocations)

Consider a perturbation (dcj , dLj) around a market allocation. Using the feasibility condition

(4) with equality yields:∑
j

dcjLj +
∑
j

cjdLj =
∑
j

Y ′
j (zj (Lj)Lj)

[
z′j (Lj)Lj + zj (Lj)

]
dLj . (A.1)

Using the market equilibrium conditions (8) and (9),∑
j

dcjLj +
∑
j

cjdLj =
∑
j

(
εzj ,Lj + 1

)
wjdLj . (A.2)

Using the spatial mobility condition (1) with equality, the consumer’s problem (13) implies that

indirect utility is equalized in space across populated locations:

vj (xj , Rj , Lj) = u. (A.3)

Totally differentiating this condition and using Roy’s identity and the individual budget constraint

yields:

dcj =
xj

εvj ,xj

du

u
−

εvj ,Lj

εvj ,xj

dLj

Lj
xj + (xj − cj)

dLj

Lj
(A.4)

Combining (A.2) and (A.4) yields:

du

u
=

∑
j

(
εzj ,Ljwj +

εvj,Lj

εvj,xj
xj − xj + wj

)
dLj∑

j
xjLj

εvj,xj

.

Defining Γj ≡ εzj ,Ljwj +
εvj,Lj

εvj,xj
xj and χ ≡

[∑
j

Lj

∂vj/∂xj

]−1
yields:

du

χ
=
∑
j

(Γj − xj + wj) dLj . (A.5)

Suppose now that we evaluate (A.5) at dLj = −dLi = dL0 and dLn = 0 for n ̸= i, j. Then du > 0

whenever (18) holds.



A.3 Appendix to 2.4.2 (Link to Henry George Theorem)

The equilibrium is stable if
∂uj

∂Lj
≤ 0. In this derivation, we do not assume that uj = u is

maintained following a local population shock. Instead, we assume that, in this perturbation,

net transfers between locations are unchanged. However, production, the housing market and the

corresponding consumption adjusts internally in j . A change in local population leads to:

duj =
∂uj
∂cj

dcj +
∂uj
∂hj

dhj +
∂uj
∂Lj

dLj

where, assuming Yj has constant returns in Nj ,
∂cj
∂Lj

=
∂wj

∂Lj
=

wj

Lj
εzj ,Lj (assuming that local changes

in production are consumed locally) while
∂hj

∂Lj
= − hj

Lj
(by housing market clearing in j). Using the

first order conditions of the consumer problem and rearranging yields:

xj
εvj ,xj

duj
uj

=

(
wjεzj ,Lj −Rjhj +

εvj ,Lj

εvj ,xj

xj

)
dLj

Lj

= (Γj −Rjhj)
dLj

Lj

Stability of the equilibrium yields

Γj −Rjhj ≤ 0, (A.6)

and when the equilibrium is efficient,
∑

j
Lj

L Γj = Γ so that summing over (A.6) for all j yields:

Γ− π ≤ 0 (A.7)

in the stable efficient equilibrium.

A.4 Planner’s Problem in Baseline model

The efficient allocation has {cj , hj , Lj , Nj , u} that deliver maximal u in the feasible set (i.e.

satisfying (3)-(7)). The planner’s Lagrangian is thus:

L =u−
∑
j

ωj [u− uj (cj , hj , Lj)]− P ∗

∑
j

cjLj −
∑
j

Yj (Nj)


−
∑
j

R∗
j [hjLj −Hj ]−

∑
j

W ∗
j [Nj − zj (Lj)Lj ]− Ω

∑
j

Lj − L

 (A.8)

We wrote the Lagrangian such that, if the problem is quasi-concave and first-order conditions are

sufficient, all the multipliers on inequality constraints are positive. In an efficient allocation, the

multipliers P , Wj , and Rj of (A.8) are the equilibrium prices for tradable goods, nontradables in

j, and efficiency units in j, respectively. Without loss of generality, one can normalize P ∗ = 1 in

the planner’s problem by choice of units of u. The multiplier Ω is the opportunity cost of a worker

in any location. It is also the impact of an adding a worker to the overall economy on the average

utility of incumbents ( dudL) at the efficient allocation.

A necessary condition for the allocation to be efficient(sufficient when the planner’s problem is

concave, which we assume here) is that the first-order conditions with respect to consumption and



employment by location hold:

[∂cj ] ωj
∂uj
∂cj

= P ∗Lj (A.9)

[∂hj ] ωj
∂uj
∂hj

= R∗
jLj (A.10)

[∂Lj ] ωj
∂uj
∂Lj

− P ∗cj −R∗
jhj +W ∗

j zj
(
1 + εzj ,Lj

)
− Ω = 0. (A.11)

Assume that the allocation can be implemented in a market setting with appropriate labor subsidies

- a conjecture that can be verified ex post. In a market allocation, consumers maximize utility

subject to their budget constraint (problem (13)). The first-order conditions of that problem hold,

and in particular
∂vj
∂xj

equals the multiplier of this budget constraint, so that:

∂uj
∂cj

=
∂vj
∂xj

(A.12)

∂uj
∂hj

=
∂vj
∂xj

Rj (A.13)

If the market allocation with subsidies is efficient, then (A.9) and (A.12) hold so that:

ωj =
Lj(
∂vj
∂xj

) , (A.14)

In addition, (A.10) and (A.13) hold leading to Rj = R∗
j . Finally, in the market allocation

∂uj

∂Lj
=

∂vj
∂Lj

and wage is given by (9) . Combining these conditions with (A.11) yields:

xj =
εvj ,Lj

εvj ,xj

xj + wj

(
1 + εzj ,Lj

)
− Ω (A.15)

Combined with (11),

sj = εzj ,Ljwj +
εvj ,Lj

εvj ,xj

xj − (π +Ω) . (A.16)

The optimal subsidy is thus (21) with Γ = π +Ω.

B Appendix to Section 3 (Extensions and Implementation)

B.1 Planner Problem with Public Good Provision

The planner now chooses gj in addition to {cj , hj , Lj , Nj , u}. Her maximization problem is:

L =u−
∑
j

ωj [u− uj (cj , hj , gj , Lj)]− P ∗

∑
j

cjLj +G (gj , Lj)−
∑
j

Yj (Nj)


−
∑
j

R∗
j [hjLj −Hj ]−

∑
j

W ∗
j [Nj − zj (Lj)Lj ]− Ω

∑
j

Lj − L

 (A.17)



The first-order conditions with respect to local consumptions are still (A.9) and (A.10). The first-

order condition with respect to public good consumption and local population change to:

[∂gj ] ωj
∂uj
∂gj

= P ∗ ∂G

∂gj
(A.18)

[∂Lj ] ωj
∂uj
∂Lj

− P ∗cj −R∗
jhj − P ∗ ∂G

∂Lj
+W ∗

j zj
(
1 + εzj ,Lj

)
− Ω = 0 (A.19)

Solving as in the baseline case using (A.9) and (A.10), we get the optimality condition for population

distribution:

xj =
εvj ,Lj

εvj ,xj

xj + wj + wjεzj ,Lj −
∂G

∂Lj
− Ω (A.20)

Comparing to the decentralized allocation with a local tax µj =
Gj

Lj
,such that xj = wj+π−µj+sj ,

yields the optimal subsidy:

sj =
εvj ,Lj

εvj ,xj

xj + εzj ,Ljwj −
∂G

∂Lj
+

Gj

Lj
+ s0 (A.21)

where s0 ensures government budget balance, i.e. s0 = −Γ +

∑
Lj

∂G
∂Lj∑
Lj

−
∑

Gj .

B.2 Heterogeneous Workers

The planner is utilitarian within type and has Pareto weights λθ across types. She maximizes∑
θ λ

θuθ under feasibility constraint by choosing
{
cθj , L

θ
j , Nj , u

θ
}
}. The Lagrangian is:

L =
∑
θ

λθuθ −
∑
θ

∑
j

ωθ
j

[
uθ − uθj

(
cθj , h

θ
j ,
{
Lθ′
j

}
θ′

)]
− P ∗

∑
θ

∑
j

cθjL
θ
j −

∑
j

Yj (Nj)


−
∑
j

R∗
j

[∑
θ

hθjL
θ
j −Hj

]
−
∑
j

W ∗
j

[
Nj −N

(
z1jL

1
j , .., z

Θ
j L

Θ
j

)]
−
∑
θ

Ωθ

∑
j

Lθ
j − Lθ


(A.22)

The first order condition with respect to population of each type in each location yields:[
∂Lθ

j

] ∑
θ′∈Θ

ωθ′
j

∂uθ
′

j

∂Lθ
j

− P ∗cθj −R∗
jh

θ
j +W ∗

j

dNj

dLθ
j

− Ωθ = 0 (A.23)

The next steps are similar to those described in A.4, where the first order conditions for con-

sumption are applied type by type. The optimal allocation satisfies:

xθj = wθ
j +

∑
θ′∈Θ

xθ
′

j

ε
vθ

′
j ,Lθ

j

ε
vθ

′
j ,xθ′

j

Lθ′
j

Lθ
j

+
∑
θ′∈Θ

wθ′
j εzθj ,Lθ′

j

Lθ′
j

Lθ
j

− Ωθ,

for some Ωθ that measures how much the planner would value an additional θ-type worker in the

economy. The relative valuation of different types depends in particular directly on their relative

welfare weights λθ. The optimal subsidy (36) follows from the consumer’s budget constraint in the

market allocation, xθj = wθ
j + πθ + sθj .



B.3 Cross-Region Spillovers

With cross-region spillovers, expression (A.11) in the baseline case becomes

[∂Lj ]
∑
k

ωk
∂uk
∂Lj

− P ∗cj −R∗
jhj +W ∗

j zj +
∑
k

W ∗
k

Lk

Lj
zkεzk,Lj − Ω = 0.

Using the same steps, and in particular plugging in (A.9), yields the following characterization

of an efficient allocation:

xj =
∑
k

εvk,Lj

εvk,xk

Lk

Lj
xk + wj

(
1 +

∑
k

wkLk

Lj
εzk,Lj

)
− Ω.

B.4 Commuting

The planner chooses a feasible allocation {cjk, Ljk, ujk} to maximize welfare. Her constrained

maximization problem corresponds to maximizing the Lagrangian:

L =u−
∑
j

ωjk

[
u− ujk

(
cjk, hjk,

∑
l

Ljl, δjk

)]
− P ∗

∑
jk

cjkLjk −
∑
j

Yj (Nj)


−
∑
j

R∗
j

[∑
k

Ljkhjk −Hj

]
−
∑
j

W ∗
j

[
Nj − zj

(∑
i

Lij

)∑
i

Lij

]
− Ω

∑
jk

Ljk − L


(A.24)

The first-order condition on population allocation, writing
∑

l Ljl = Lj , is:

[∂Ljk]
∑
l

ωjl
∂ujl
∂Lj

+ ωjk
∂ujk
∂τjk

∂δjk
∂Ljk

−Rjkhjk − cjk +W ∗
k zk (1 + εzk,Lk

)− Ω = 0

Therefore:

sjk =
∑
l

εvjl,Lj

εvjl,xjl

Ljlxjl
Lj︸ ︷︷ ︸

residence−j specific

+
εvjk,δjkεδjk,Ljk

εvjk,xjk

xjk + wkεzk,Lk︸ ︷︷ ︸
workplace-k specific

− (Ω + π)

In the constant elasticity example 3, this simplifies to:

sjk =
∑
l

γA
Ljlxjl
Lj

− γTxjk + wkγz − Ω,

hence plugging in xjk = wk + sjk yields (37).

C Appendix to Section 4 (Redistribution)

The social welfare function is:

W =
∑
θ

µω max
j

{
uj (cj (θ)) + εωj

}
︸ ︷︷ ︸

≡W (θ)



with cj (θ) = wj (θ)− t (wj (θ)) + sj . The planner’s problem is summarized by the Lagrangian:

L = W − χ

∑
θ

∑
j

sjLj (θ)−
∑
θ

∑
j

t (wj (θ))Lj (θ)


The introduction of a place-based subsidy to j, dsj , starting from a pure place-blind redistribution

system t (.), yields a welfare change of:

dW

dsj
=

∂W

∂sj
− χ

(∑
θ

∑
i

t (wi (θ))
∂Li (θ)

∂cj (θ)

)
.

If Pareto weights depend only on skill θ but not on preference shocks ε (µω = µθ), then:

∂W

∂sj
=
∑
θ

µθ ∂uj (θ)

∂cj (θ)
Lj (θ) .

This last equality uses that ∂W
∂sj

=
∑

θ µ
θ ∂W (θ)
∂ui(θ)

∂uj(θ)
∂sj(θ)

and the Williams-Daly-Zachary theorem (Mc-

Fadden, 1978, 1980), which yields that for such a discrete choice model, ∂W (θ)
∂ui(θ)

= Li (θ). Defining

λ̄j ≡
1

χ

∂W

∂sj
(A.25)

and manipulating the equation further yields:

1

Lj

dW

dsj
= χ

λ̄j − 1−

∑
θ

∑
i t (wi (θ))

∂Li(θ)
∂cj(θ)

Lj


Consider a country with two locations {i, j}, with Li+Lj = L, hence dLi+dLj = 0. Implementing

a small place-based subsidy dsj =
ds
Lj

in j financed by a lump-sum tax dsi =
ds
Li

elsewhere leads to

the welfare change

dW =
dW

dsj
dsj +

dW

dsi
dsi,

which after some algebra yields (54).

To characterize the optimal {sj} given t (.), take the first order condition of the planner problem

(53):

∂L
∂sj

=
∂W

∂sj
− χLj − χ

∑
θ

∑
i

(si − t (wi (θ)))
∂Li (θ)

∂cj (θ)
= 0.

Rearranging and using (A.25) yields expression (56).


