Place-Based Redistribution

Cecile Gaubert, Patrick Kline and Danny Yagan

January 13, 2021
Motivation

- Widespread use of place-based policies: 30% of EU budget, U.S., UK, France...

- Two rationales for place-based policies:

 1. **Efficiency**: [*Traditional focus*]
 - Internalize agglomeration/congestion externalities
 - Limit under-provision of local public goods

 2. **Equity**: [*This paper*]
 - Places are heterogeneous in income, opportunities, environment
 - A way to transfer resources to the disadvantaged

- **Question**: Does place-based *redistribution* improve welfare?
Redistributive motive: Poverty is spatially concentrated

West/South Chicago:
50% Poverty Rates

- Ex: U.S. Empowerment Zones 1993-present
- Cover 1% of pop. $3,000 per full-time worker.
We already redistribute based on income

West/South Chicago:
50% Filers with Negative Income Tax

Should South Side residents get *extra* transfer?
Same is true in distressed rural areas

Appalachia:
50% Poverty Rates

Should Appalachia residents get *extra* transfer?
Traditional view: No, because of efficiency costs

“‘Help Poor People, Not Poor Places’...is something of a mantra for many urban and regional economists... [Place-based] aid is inefficient because it increases economic activity in less productive places and decreases economic activity in more productive places.” – Glaeser (2008)
Our paper: Place-based redistribution can help equity-efficiency tradeoff

- **Theory**: Place-based can usefully complement income-based redistribution
 - **Lower efficiency cost** of equity gains, if limited mobility or limited earnings loss from moving
 - **Unique equity gains** from within-earnings redistribution
 - Survey evidence

- **Quantification**: Optimal transfer to 1% living in poorest tracts $\sim $3,000 – $5,500/household
 - Magnitude depends in particular on which forces drive sorting
 - Comparative advantage constitutes in itself a motive for place-based redistribution
Contributions

- Main focus: efficiency
- We characterize optimal redistribution in the workhorse urban model

Public: Tagging; commodity taxation [Atkinson-Stiglitz ’76, Akerlof ’78, Mirrlees ’76, Christiansen ’84, Diamond-Sheshinski ’95, Parsons ’96, Cremer-Gahvari ’98, Saez ’02, Laroque ’05, Kaplow ’06/’08, Mankiw-Weinzierl ’10, Kleven-Kopczuk ’11, Rotschild-Scheuer’13, Gordon-Kopczuk ’14, Allcott-Lockwood-Taubinsky ’19]

- Tagging: Residential choice is an area where tagging is used. Study its theoretical rationale.
- Place-based tax vs. commodity tax:
 - Place-based tax needs not be linear in consumption
 - Place: productivity differences beyond cost-of-living difference, comparative advantage
Roadmap

1. Equity gains and efficiency costs of place-based redistribution (PBR)
2. Comparison to income-based redistribution
3. Quantification
Model setup

- Model combining key elements from Urban + Public Finance:
 - Heterogeneous skill θ, unobserved
 - Endogenous labor supply \Rightarrow pre-tax income z^*, observed
 - Heterogeneous preferences for locations $\{\varepsilon_j\}$, unobserved
 - Residential choice j^*, observed

- Not in analysis
 - [Market failures (e.g. agglomeration spillovers, local public goods)]
 - [Incidence on landowners (see paper)]
Household preferences

- Unit mass of households $\Theta = (\theta, \varepsilon_0, \varepsilon_1) \sim F(\Theta)$ choose earnings z, consumption of c, h and location j to maximize utility:

$$U \left(c, h, a_j, \frac{z}{w_j(\theta)} \right) + \varepsilon_j$$

- Budget constraint:

$$c + r_j h = z - T_j(z)$$

- Two locations $j \in \{0, 1\} = \{Elsewhere, Distressed\}$
 - Amenities: $a_0 \geq a_1$
 - Housing rents r_j: $r_0 \geq r_1$
 - Productivity: $w_0(\theta) \geq w_1(\theta)$
Planner’s problem

- Planner maximizes:

\[
SWF = \int \omega(\Theta) v^*(\Theta) \, dF(\Theta) = \mathbb{E}[\omega v^*]
\]

- \(\omega(\Theta)\): Pareto weight on \(\Theta\). \(v^*\): Indirect utility.

- Define social marginal welfare weights \(\lambda^*(\Theta)\): welfare benefit of an extra $1 to household \(\Theta\):

\[
\lambda^*(\Theta) \equiv \frac{\omega(\Theta) \frac{\partial v^*(\Theta)}{\partial I}}{\phi}
\]
Redistributive tools

- Income tax $T(z)$, place-blind

- Lump-sum Place-Based Redistribution scheme (PBR), indexed by Δ
 - Distressed residents receive lump-sum transfer $\frac{\Delta}{S}$ (S: share of households in Distressed)
 - Elsewhere residents pay lump-sum tax $\frac{\Delta}{1-S}$

Q. What is the first-order welfare effect of a small PBR reform starting from a place-blind system?
Impact of PBR on social welfare

Proposition

Implementing a small place-based transfer improves welfare if and only if

\[
\frac{dSWF}{d\Delta} = \bar{\lambda}_1 - \bar{\lambda}_0 - \frac{dS}{d\Delta} \cdot \mathbb{E} \left[T(z^*_0) - T(z^*_1) | move \right] > 0
\]
Impact of PBR on social welfare

Proposition

Implementing a small place-based transfer improves welfare if and only if

\[
\frac{dSWF}{d\Delta} = \bar{\lambda}_1 - \bar{\lambda}_0 - \frac{dS}{d\Delta} \cdot \mathbb{E}[T(z_0^*) - T(z_1^*) | \text{move}] > 0
\]

- Equity gains depend on average social marginal welfare weights (place as a “tag”):
 \[\bar{\lambda}_1 - \bar{\lambda}_0\]
Impact of PBR on social welfare

Proposition

Implementing a small place-based transfer improves welfare if and only if

\[
\frac{dSWF}{d\Delta} = \lambda_1 - \lambda_0 - \frac{dS}{d\Delta} \cdot \mathbb{E}\left[T(z_0^*) - T(z_1^*) | move \right] > 0
\]

- Equity gains depend on average social marginal welfare weights (place as a “tag”):
 \[\bar{\lambda}_1 - \bar{\lambda}_0\]

- Efficiency cost depends on mobility responses and earnings responses:
 \[
 \frac{dS}{d\Delta} \cdot \mathbb{E}\left[T(z_0^*) - T(z_1^*) | move \right] > 0
 \]
When equity gains come at no efficiency cost: Special cases

Neighborhood Zones

PBR between affluent/poor residential neighborhoods with same access to business district:

- no earnings loss upon moving \Rightarrow no efficiency cost of PBR

Moving costs [Sjaastad '62, Kennan-Walker '10/'11, Bayer-McMillan-Murphy-Timmins '16]

$U_{\text{Distressed}} < U_{\text{Elsewhere}}$, but households stay in Distressed because of high moving costs

- no household wants to pay a moving cost to move to Distressed, even after PBR
- no movers
\Rightarrow no efficiency cost of PBR

Comp. advantage/Skilled jobs clustering [Moretti '12, De la Roca-Puga'17, Autor '19]

High-skilled/high-wage jobs only in Elsewhere; low-skilled jobs in both areas, same low wage.

- high-skill not incentivized to move to Distressed; only low-skill move
- no earnings loss of movers
\Rightarrow no efficiency cost of PBR
When equity gains come at no efficiency cost: Special cases

Neighborhood Zones

PBR between affluent/poor residential neighborhoods with same access to business district:

- no earnings loss upon moving \Rightarrow no efficiency cost of PBR

Moving costs [Sjaastad '62, Kennan-Walker '10/'11, Bayer-McMillan-Murphy-Timmins '16]

$U(\text{Distressed}) < U(\text{Elsewhere})$, but households stay in Distressed because of high moving costs

- no household wants to pay a moving cost to move to Distressed, even after PBR
- no movers \Rightarrow no efficiency cost of PBR
When equity gains come at no efficiency cost: Special cases

1. **Neighborhood Zones**
 PBR between affluent/poor residential neighborhoods with same access to business district:
 - no earnings loss upon moving \Rightarrow no efficiency cost of PBR

2. **Moving costs** [Sjaastad '62, Kennan-Walker '10/'11, Bayer-McMillan-Murphy-Timmins '16]
 $U(\text{Distressed}) < U(\text{Elsewhere})$, but households stay in Distressed because of high moving costs
 - no household wants to pay a moving cost to move to Distressed, even after PBR
 - no movers \Rightarrow no efficiency cost of PBR

3. **Comp. advantage/Skilled jobs clustering** [Moretti '12, De la Roca-Puga'17, Autor '19]
 High-skilled/high-wage jobs only in Elsewhere; low-skilled jobs in both areas, same low wage.
 - high-skill not incentivized to move to Distressed; only low-skill move
 - no earnings loss of movers \Rightarrow no efficiency cost of PBR
Increase PBR until additional equity gains are outweighed by additional efficiency costs:
 - Efficiency costs include impact of movers on PBR budget

Proposition

The optimal place-based transfer Δ^* obeys:

$$
\Delta^* = \frac{\bar{\lambda}_1(\Delta^*) - \bar{\lambda}_0(\Delta^*) - \frac{dS(\Delta^*)}{d\Delta} \mathbb{E} [T(z_0^*) - T(z_1^*) | move]}{\frac{dS(\Delta^*)}{d\Delta} / [S(\Delta^*)(1 - S(\Delta^*))]}.
$$
When does PBR usefully complement income-based redistribution?

- Couldn’t an income tax reform dominate this place-based reform?

- **Compare PBR to an income tax reform** \(q \tilde{T}(z) \) that raises same tax at each earnings level

\[
\tilde{T}(z) \propto S - s(z)
\]

where \(s(z) \): share of \(z \)-earners who live in Distressed

- PBR useful in complement to place-blind redistribution if:

\[
\text{Difference in Equity Benefits} - \text{Difference in Efficiency Costs} \geq 0
\]
1. Difference in Efficiency costs
PBR desirability: reduce efficiency costs

- Difference in Efficiency costs:
 - PBR: as above, cost of movers; Income tax: distorts labor supply

\[
\left(\frac{dS}{d\Delta} - \frac{dS}{dq} \right) E \left[T(z_0^*) - T(z_1^*) \mid \text{move} \right] - E \left\{ -T'(z^*) \frac{s'(z^*)}{S(1-S)} \frac{Z_{1-\tau}}{1 + Z_{1-\tau} T''(z^*)} \right\}
\]

 - Horserace. Low if: limited migration/earnings losses of movers; large labor supply responses

- In commodity taxation lit., what drives sorting is important for net efficiency cost [Saez '02]
 - Homogeneous pref. & sorting only driven by income effect: commodity tax does not help
 - If sorting driven by other forces (e.g. heterogeneous preference): commodity tax may help
 - Silent on sorting driven by comparative advantage

- Come back to this question in quantification:
 - Embed sorting forces from urban literature – heterogeneous preferences for location amenities; comparative advantage; non-homothetic preferences for housing
2. Difference in Equity Benefits

PBR desirability: unique equity gains

- In isolation, PBR’s equity gains depend on how $\lambda(\Theta)$ covaries with location choice of households:
 \[C(\lambda, j^*) \]

- Income tax reform takes care of across earnings redistribution
 \[\Rightarrow \text{PBR’s unique (net) equity gains are within earnings} \]
 \[C(\lambda, j^* | z^*) \]

- Unique equity gain of PBR if, at the same income level z, households living in Distressed have a higher λ than those who live in Elsewhere
Rationale for within-earnings redistribution $\lambda_1(z) \geq \lambda_0(z)$

- Consider case where labor supply is separable to isolate key driving forces

$$U = \psi(g(c, h), a_j) - e\left(\frac{z}{w(\theta)}\right)$$

- with $g(c, h)$ homothetic consumption index

Cost-of-living effect: $P_0 > P_1 \Rightarrow \lambda_1(z) \geq \lambda_0(z)$ if ψ not too concave

- Households are poorer in real terms in Elsewhere
- A govt dollar spent in Distressed goes further, as prices are lower
- Dominates when ψ not too concave.
Rationale for within-earnings redistribution $\lambda_1(z) \geq \lambda_0(z)$

- Consider case where labor supply is separable to isolate key driving forces

$$U = \psi(g(c, h), a_j) - e\left(\frac{z}{w(\theta)}\right)$$

- with $g(c, h)$ homothetic consumption index

Cost-of-living effect: $P_0 > P_1 \Rightarrow \lambda_1(z) \geq \lambda_0(z)$ if ψ not too concave
 - Households are poorer in real terms in Elsewhere
 - A govt dollar spent in Distressed goes further, as prices are lower
 - Dominates when ψ not too concave.

Amenity effect: $a_1 < a_0 \Rightarrow \lambda_1(z) \geq \lambda_0(z)$ if amenities - consumption q-substitutes $(\frac{\partial^2 \psi}{\partial g \partial a} < 0)$
 - Disamenities raise the marginal utility of consumption
 - e.g. car rides to avoid crime, healthcare needs and pollution
Disamenities that can raise the marginal utility of consumption

High-Poverty Tracts Have More Murders

Air pollution (micrograms of ambient particulate pollution per cubic meter)

High-Poverty Tracts Have Higher Pollution
Consider separable case in consumption and/or amenities to isolate key driving forces

\[U = \psi(g(c, h), a_j) - e\left(\frac{z}{w(\theta)}\right) \]

- with \(g(c, h) \) homothetic consumption aggregate

1. **Cost-of-living effect**: \(P_0 > P_1 \Rightarrow \lambda_1^z > \lambda_0^z \) so long as \(\psi \) not too concave
 - dollar spent goes further in buying consumption in low-price location

2. **Amenity effect**: \(a_1 < a_0 \Rightarrow \lambda_1^z > \lambda_0^z \) if amenities and consumption are q-substitutes \(\frac{\partial^2 \psi}{\partial g \partial a} < 0 \)
 - lower amenities in 1 raises marginal utility of consumption, e.g. car rides to avoid crime

3. **Equality and justice**: Residents of Distressed are more deserving \cite{Wilson87}
 - suffer from past injustices, unfair treatment
 - can be folded into high Pareto weights \(\omega(\Theta) \) \cite{SaezStantcheva16}
High poverty neighborhoods and past injustices

High-Poverty Tracts Were 5x More Likely Redlined

Graph showing the correlation between poverty rate and the share designated a hazardous neighborhood for mortgage lending in 1935 ('redlined').
Rationale for within-earnings redistribution (Why place can be special)

- Consider separable case in consumption and/or amenities to isolate key driving forces

\[U = \psi(g(c, h), a_j) - e\left(\frac{z}{w(\theta)}\right) \]

- with \(g(c, h) \) homothetic consumption aggregate

1. **Cost-of-living effect**: \(P_0 > P_1 \Rightarrow \lambda_z^1 > \lambda_z^0 \) so long as \(\psi \) not too concave
 - dollar spent goes further in buying consumption in low-price location

2. **Amenity effect**: \(a_1 < a_0 \Rightarrow \lambda_z^1 > \lambda_z^0 \) if amenities and consumption are q-substitutes \(\left(\frac{\partial^2 \psi}{\partial g \partial a} < 0 \right) \)
 - lower amenities in 1 raises marginal utility of consumption, e.g. car rides to avoid crime

3. **Equality and justice**: Residents of Distressed are more deserving [Wilson '87]
 - suffer from past injustices, unfair treatment
 - can be folded into high Pareto weights \(\omega(\Theta) \) [Saez and Stantcheva '16]
Survey: preferences for redistribution within-earnings/across place?

- Survey of 1,100 Americans on Amazon MTurk [e.g. Kuziemko-Norton-Saez-Stantcheva '15]

- Elicit social preference between 3 reforms. All 3 reforms have the **same budget** and are for families with an **identical low income**:
 1. distributed to poor families everywhere
 2. targeted to poor families living in distressed areas
 3. targeted to poor families living in thriving areas

- Suggests social preference for redistribution across place, within earnings, towards Distressed areas
Quantification: How large might optimal place-based transfers be?
Quantification: How large might optimal place-based transfers be?

- Compute optimal transfer scheme to the 1% who live in poorest group of tracts
 - Rank U.S. Census tracts by poverty rates (2013-2017 ACS)
 - Combine into 100 location groups, each with 1% of the population

- Utilitarian planner maximizes $SWF = \mathbb{E}[v^*]$ using three-bracket income tax $T(\cdot)$ and also PBR Δ
 - Baseline SWF features no within-earnings/ across place redistributive motive.
 - Focus on PBR as a means to reduce efficiency costs.
Baseline utility:

\[u_j(\Theta) = \ln \left(c^{1-\alpha} h^\alpha - \frac{\eta}{1 + \eta} \left(\frac{z}{w_j(\theta)} \right)^{1+\eta} \right) + a_j(\theta) + \frac{1}{\kappa} \varepsilon_j \]

- Taste shock: \(\varepsilon_j \sim \text{EV1} \).
- Productivity advantage of locations is skill-neutral: \(w_j(\theta) = \theta w_j \)
- \(\lambda_1(z) = \lambda_0(z) \)
- Skill-specific mean taste for amenities \(a_j(\theta) \) drives sorting

Add comparative advantage:

- Productivity advantage of locations is skill-biased: \(w_j(\theta) = w_j \theta^{b_j} \)
- Induces sorting of high-skill into high-wage communities

Add income-based sorting:

- Use Stone-Geary instead of Cobb-Douglas in consumption: \(c^{1-\alpha}(h - h)^\alpha \)
- Housing is a necessity, induces sorting of low-skill into low-rents communities
\[u_j(\Theta) = \ln \left(c^{1-\alpha} h^\alpha - \frac{\eta}{1 + \eta} \left(\frac{z}{\theta w_j} \right)^{\frac{1+\eta}{\eta}} \right) + a_j(\theta) + \frac{1}{\kappa} \varepsilon_j; \quad \theta \sim \log\text{-normal}(\mu_\theta, \sigma_\theta). \]

Baseline Calibration:
- Rents \(\{r_j\} \): ACS.
- Wage shifters \(\{w_j\} \): from productivity-rent gradient [Hornbeck-Moretti'19]
- \(\kappa = 0.5 \): matches population elasticity wrt wage [Kennan-Walker '11]
- Housing expenditure share \(\alpha = 0.3 \). Frisch labor supply elasticity \(\eta = 0.5 \) [Chetty et al. '11].
- Current \(T(z) \): $11K lump-sum transfer w/ brackets 44%, 16%, 27% [Piketty-Saez-Zucman '18]
- Skill-specific valuation of amenities \(\{a_j(\theta)\} \) (and \(\mu_\theta, \sigma_\theta \)): residual to match distribution of ACS earnings (9 earnings bins) and total population across locations.

Extensions:
- Comparative advantage: \(\{b_j\} \) indexed on \(\{w_j\} \) to match estimate in [DeLaRoca-Puga'17]
- Non-homothetic preferences: \((\alpha, h) \) match housing share between 0.15 and 0.52
Substantial income sorting in the data...

Empirical Sorting Targets

- Poor (HH labor earnings < $4K)
- Rich (HH labor earnings > $180K)
... Rationalized by place productivity + skill-specific valuation of amenities

Baseline calibration
Optimal PBR: Baseline Results

<table>
<thead>
<tr>
<th></th>
<th>Optimal level of PBR</th>
<th>Social marginal welfare weight difference narrowed</th>
<th>Increase in Distressed population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>$5,500</td>
<td>71%</td>
<td>9%</td>
</tr>
<tr>
<td>Capped earnings subsidy</td>
<td>36%</td>
<td>54%</td>
<td>7%</td>
</tr>
<tr>
<td>Change top income tax bracket only</td>
<td>$3,600</td>
<td>49%</td>
<td>6%</td>
</tr>
<tr>
<td>2x productivity differences</td>
<td>$4,800</td>
<td>63%</td>
<td>8%</td>
</tr>
<tr>
<td>2x migration</td>
<td>$4,000</td>
<td>53%</td>
<td>13%</td>
</tr>
</tbody>
</table>
Extensions account for other sorting forces

- Add comparative advantage of high skill in high-wage cities
- Add income-based sorting
- Residual role of skill-specific valuation of amenities is muted compared to baseline
Optimal PBR with additional sorting forces

Optimal Level of PBR

<table>
<thead>
<tr>
<th></th>
<th>Calibration</th>
<th>Eliminate skill-taste correlation after calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Baseline</td>
<td>$5,500</td>
<td>$400</td>
</tr>
<tr>
<td>Income effects</td>
<td>$3,700</td>
<td>-$400</td>
</tr>
<tr>
<td>Comparative advantage</td>
<td>$4,200</td>
<td>$1,600</td>
</tr>
<tr>
<td>Income effects + Comparative advantage</td>
<td>$3,100</td>
<td>$700</td>
</tr>
</tbody>
</table>

- Optimal PBR in the range of $3,100-$5,500 depending on sorting forces
- Comparative advantage in isolation provides motive for PBR
Conclusion

- Place-based redistribution can deliver unique equity and efficiency benefits
 - Efficiency of taxation: Better targeting when mobility or wage differences are low
 - Equity: Unique gains when marginal utilities differ across place, within-earnings

- No presumption against helping poor places
Appendix
Why direct subsidies to the poor to distressed areas?

- 78% Low amenities
- 44% Justice
- 39% Higher spending needs
- 34% Dollar goes further

Poor families in the distressed area are worse off, since they deal with high poverty, high crime, high pollution, struggling schools, and a history of job losses.

Poor families in distressed areas are more deserving, since they are more likely to be poor due to circumstances beyond their control.

An extra dollar goes further in the distressed area, since poor families there have greater spending needs like supplementing school instruction, replacing stolen goods, or treating asthma from high pollution.

An extra dollar goes further in the distressed area, since housing costs and other services are cheaper.
Optimal PBR

The optimal place-based transfer \(\Delta^* \) obeys:

\[
\Delta^* \approx \frac{\bar{\lambda}_1 (0) - \bar{\lambda}_0 (0) + \mathbb{E} \left\{ \frac{dS(\cdot,0)}{d\Delta} \left[T \left(z_1^* \right) - T \left(z_0^* \right) \right] \right\}}{\frac{dS}{d\Delta} - \mathbb{E} \left[\frac{dS(\cdot,0)}{d\Delta}, (1 - S) \lambda_1 (\cdot,0) + S \lambda_0 (\cdot,0) \right]} - \left(\bar{\Lambda}_1 (0) + \bar{\Lambda}_0 (0) \right) - \mathbb{E} \left\{ \frac{d^2 S(\cdot,0)}{d\Delta^2} \left[T \left(z_1^* \right) - T \left(z_0^* \right) \right] \right\},
\]

where: \(\Lambda (\Theta) = \frac{\partial \lambda (\Theta)}{\partial I} \) and \(\bar{\Lambda}_j = \mathbb{E} [\Lambda (\cdot) | j^* = j] \)

both evaluated at \(\Delta = 0. \)