Economics 210A Spring 2015 Christina Romer David Romer

LECTURE 5 Institutions, Culture, and Growth

February 25, 2015

I. OVERVIEW

A Fundamental Question: Why Isn't the Whole World Developed?

- Industrialization spread rapidly to some areas.
- Technology is portable (non-rival).
- So are institutions.

Three Broad Possibilities

- Direct effects of geography.
- Institutions.
- Culture.
- Other? (Human capital? "Policies" rather than institutions?)

If the Answer Isn't Geography, Ideally We'd Like to Dig Deeper: Where Do Variations in Institutions or Culture Come from?

- Geography.
- Historical accident.
- Ideas.
- ...
- And: Why do the differences persist?

Today's Papers

- AJR: Geography \rightarrow Institutions \rightarrow Development.
- Nunn: Geography (and historical accident?) → Slave trade → Institutions (and perhaps culture) → Development.
- Clark: Culture \rightarrow Development.

II. DARON ACEMOGLU, SIMON JOHNSON, AND JAMES ROBINSON

"THE COLONIAL ORIGINS OF COMPARATIVE DEVELOPMENT: AN EMPIRICAL INVESTIGATION"

AJR's Thesis

- Settler mortality affected colonialization strategy, which affected institutions.
- These institutional differences have persisted.
- Engerman and Sokoloff advance similar ideas; but they focus on conduciveness to slave agriculture rather than the disease environment.

AJR's Basic Empirical Strategy

- In a sample of former colonies, regress income per capital today on institutions today, instrumenting with settler mortality.
- "This identification strategy will be valid as long as ... mortality rates of settlers between the seventeenth and nineteenth centuries have no effect on income today other than through their influence on institutional development" (AJR, p. 1383).
- No!! The key issue is whether settler mortality is correlated with determinants of income today other than institutions.

AJR's Qualitative Evidence

- Mortality influenced settlement patterns.
- Colonizers adopted very different strategies in different places: "settler colonies" vs. "extractive states."
- Institutions had considerable persistence.
- Evaluation?

OLS

FIGURE 2. OLS RELATIONSHIP BETWEEN EXPROPRIATION RISK AND INCOME

From: AJR, "The Colonial Origins of Comparative Development"

	Whole world (1)	Base sample (2)	Whole world (3)	Whole world (4)	Base sample (5)	Base sample (6)	Whole world (7)	Base sample (8)
]	Dependent v	variable is lo	og GDP per	capita in 199	95	Depender is log or worker	nt variable utput per in 1988
Average protection against expropriation risk, 1985–1995	0.54 (0.04)	0.52 (0.06)	0.47 (0.06)	0.43 (0.05)	0.47 (0.06)	0.41 (0.06)	0.45 (0.04)	0.46 (0.06)
Latitude			0.89 (0.49)	0.37 (0.51)	1.60 (0.70)	0.92 (0.63)		
Asia dummy				-0.62 (0.19)		0.60 (0.23)		
Africa dummy				-1.00 (0.15)		-0.90 (0.17)		
"Other" continent dummy				-0.25 (0.20)		-0.04 (0.32)		
<i>R</i> ² Number of observations	0.62 110	0.54 64	0.63 110	0.73 110	0.56 64	0.69 64	0.55 108	0.49 61

TABLE 2-OLS REGRESSIONS

Notes: Dependent variable: columns (1)–(6), log GDP per capita (PPP basis) in 1995, current prices (from the World Bank's World Development Indicators 1999); columns (7)–(8), log output per worker in 1988 from Hall and Jones (1999). Average protection against expropriation risk is measured on a scale from 0 to 10, where a higher score means more protection against expropriation, averaged over 1985 to 1995, from Political Risk Services. Standard errors are in parentheses. In regressions with continent dummies, the dummy for America is omitted. See Appendix Table A1 for more detailed variable definitions and sources. Of the countries in our base sample, Hall and Jones do not report output per worker in the Bahamas, Ethiopia, and Vietnam.

From: AJR, "The Colonial Origins of Comparative Development"

Data on Potential Settler Mortality

- Mainly death rates of soldiers (not from battle).
- For Latin America, mainly based on death rates of bishops, adjusted to reflect higher death rates of soldiers.
- Deaths were largely from disease, especially malaria and yellow fever.
- AJR argue that the diseases had much smaller effects on local populations.

IV – First Stage

FIGURE 3. FIRST-STAGE RELATIONSHIP BETWEEN SETTLER MORTALITY AND EXPROPRIATION RISK

From: AJR, "The Colonial Origins of Comparative Development"

	Base sample	Base sample	Base sample without Neo-Europes	Base sample without Neo-Europes	Base sample without Africa	Base sample without Africa	Base sample with continent dummies	Base sample with continent dummies	Base sample, dependent variable is log output per worker		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Panel A: Two-Stage Least Squares											
Average protection against expropriation risk 1985–1995 Latitude	0.94 (0.16)	1.00 (0.22) -0.65 (1.34)	1.28 (0.36)	1.21 (0.35) 0.94 (1.46)	0.58 (0.10)	0.58 (0.12) 0.04 (0.84)	0.98 (0.30)	1.10 (0.46) -1.20 (1.8)	0.98 (0.17)		
Asia dummy							-0.92	-1.10			
Africa dummy							(0.40) -0.46 (0.36)	(0.52) -0.44 (0.42)			
"Other" continent dummy							-0.94 (0.85)	-0.99 (1.0)			
Panel	B: First S	tage for A	verage Protecti	on Against Exp	ropriation	Risk in 19	85-1995				
Log European settler mortality	-0.61 (0.13)	-0.51 (0.14)	-0.39 (0.13)	-0.39 (0.14)	-1.20 (0.22)	-1.10 (0.24)	-0.43 (0.17)	-0.34 (0.18)	-0.63 (0.13)		
Latitude		2.00		-0.11		0.99		2.00			
Asia dummy		(1.34)		(1.50)		(1.43)	0.33	(1.40) 0.47 (0.50)			
Africa dummy							-0.27	-0.26			
"Other" continent dummy							(0.41) 1.24 (0.84)	(0.41) 1.1 (0.84)			
<i>R</i> ²	0.27	0.30	0.13	0.13	0.47	0.47	0.30	0.33	0.28		
Panel C: Ordinary Least Squares											
Average protection against expropriation risk 1985–1995 Number of observations	0.52 (0.06) 64	0.47 (0.06) 64	0.49 (0.08) 60	0.47 (0.07) 60	0.48 (0.07) 37	0.47 (0.07) 37	0.42 (0.06) 64	0.40 (0.06) 64	0.46 (0.06) 61		

TABLE 4-IV REGRESSIONS OF LOG GDP PER CAPITA

From: AJR, "The Colonial Origins of Comparative Development"

Discussion

- Latitude and Africa dummy (vs. Americas) are insignificant (!).
- OLS vs. IV: Can measurement error broadly defined – plausibly explain why the IV estimates are so much larger?
- If the measurement error is classical, $\hat{b}_{OLS} = \frac{V_X}{V_X + V_u} b_{TRUE}$, where V_X and V_u are the variances of the "true" X and of the measurement error.
- Implied economic importance from the IV estimate?

Candidates for Omitted Variables Correlated with the Instrument

- Identity of the colonizer.
- Legal origins.
- Religion.
- Weather.
- Suitability for agriculture.
- Modern disease environment.
- Effects of the slave trade operating through culture rather than institutions.
- Human capital accumulation.
- More?

	Base sample (1)	Base sample (2)	Base sample (3)	Base sample (4)	Base sample (5)	Base sample (6)	Base sample (7)	Base sample (8)	Base sample (9)
	Pan	el A: Two	o-Stage L	east Squa	res				
Average protection against	0.84	0.83	0.96	0.99	1.10	1.30	0.74	0.79	0.71
expropriation risk, 1985-1995	(0.19)	(0.21)	(0.28)	(0.30)	(0.33)	(0.51)	(0.13)	(0.17)	(0.20)
Latitude		0.07		-0.67		-1.30		-0.89	-2.5
		(1.60)		(1.30)		(2.30)		(1.00)	(1.60)
p-value for temperature variables	[0.96]	[0.97]				. ,		. ,	[0.77]
p-value for humidity variables	[0.54]	[0.54]							[0.62]
Percent of European descent in 1975			-0.08	0.03					0.3
*			(0.82)	(0.84)					(0.7)
<i>p</i> -value for soil quality				. ,	[0.79]	[0.85]			[0.46]
<i>p</i> -value for natural resources					[0.82]	[0.87]			[0.82]
Dummy for being landlocked					0.64	0.79			0.75
,					(0.63)	(0.83)			(0.47)
Ethnolinguistic fragmentation					,,	(-1.00	-1.10	-1.60
							(0.32)	(0.34)	(0.47)

TABLE 6-ROBUSTNESS CHECKS FOR IV REGRESSIONS OF LOG GDP PER CAPITA

Panel B: First Stage for Average Protection Against Expropriation Risk in 1985-1995

Log European settler mortality	-0.64	-0.59	-0.41	-0.4	-0.44	-0.34	-0.64	-0.56	-0.59
	(0.17)	(0.17)	(0.14)	(0.15)	(0.16)	(0.17)	(0.15)	(0.15)	(0.21)
Latitude		2.70		0.48		2.20		2.30	4.20
		(2.00)		(1.50)		(1.50)		(1.40)	(2.60)
R^2	0.39	0.41	0.34	0.34	0.41	0.43	0.27	0.30	0.59

From: AJR, "The Colonial Origins of Comparative Development"

	(1)	(2)	(2)	(4)	(5)	(6)	(7)	(0)	(0)	(10)	(11)
	(1)	(2)	(3)	(4)	(5)	(6)	(/)	(8)	(9)	(10)	(11)
										Yellov	v fever
										ave	age
		Instr	umenting	only for	average		Instru	menting	for all	protectio	n against
		protection against expropriation risk						right-hand-side variables			ation risk
			Panel A:	1 wo-Stag	e Least Sq	uares					
Average protection against	0.69	0.72	0.63	0.68	0.55	0.56	0.69	0.74	0.68	0.91	0.90
expropriation risk, 1985–1995	(0.25)	(0.30)	(0.28)	(0.34)	(0.24)	(0.31)	(0.26)	(0.24)	(0.23)	(0.24)	(0.32)
Lattude		(1.04)		(0.97)		(0.95)					
Malaria in 1994	-0.57	-0.60					-0.62				
Life expectancy	(0.47)	(0.47)	0.03	0.02			(0.68)	0.02			
Life expectancy			(0.02)	(0.03)				(0.02)			
Infant mortality			()	(,	-0.01	-0.01		(,	-0.01		
					(0.005)	(0.006)			(0.01)		
Devel			P				D:1 :	1005 100	-		
Panel	B: First St	tage for A	verage Pi	rotection .	Against Ex	propriation	Risk in	1985199	5		
Log European settler mortality	-0.42	-0.38	-0.34	-0.30	-0.36	-0.29	-0.41	-0.40	-0.40		
Latituda	(0.19)	(0.19)	(0.17)	(0.18)	(0.18)	(0.19)	(0.17)	(0.17)	(0.17)		
Lattude		(1.40)		(1.40)		(1.40)	(1.80)	(1.80)	(1.80)		
Malaria in 1994	-0.79	-0.65		(<i>)</i>		()	()	····,	····/		
T:C	(0.54)	(0.55)	0.05	0.04							
Life expectancy			(0.03)	(0.04							
Infant mortality			(0.02)	(0.02)	-0.01	0.01					
					(0.01)	(0.01)	0.10	0.10	0.10		
Mean temperature							-0.12	(0.05)	-0.12		
Distance from coast							0.57	0.55	0.55		
							(0.51)	(0.52)	(0.52)		
Yellow fever dummy										-1.10 (0.41)	-0.81
R ²	0.3	0.31	0.34	0.35	0.32	0.34	0.37	0.36	0.36	0.10	0.32

TABLE 7-GEOGRAPHY AND HEALTH VARIABLES

From: AJR, "The Colonial Origins of Comparative Development"

Other Issues

- Concerns abut the data: Albouy (2012 and others) vs. AJR (2012 and others).
- Are the intermediate steps (e.g., institutions in 1900 and at time of independence) strong enough?

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Panel A	Depe	endent V	ariable Is	Average	Protectio	n Again	st Exprop	riation Ris	sk in 1985	5–1995
Constraint on executive in 1900	0.32 (0.08)	0.26 (0.09)								
Democracy in 1900			0.24	(0.07)						
Constraint on executive in first year of independence			(0.00)	(0.07)	0.25 (0.08)	0.22 (0.08)				
European settlements in 1900							3.20 (0.61)	3.00 (0.78)		
Log European settler mortality							(0.01)	(0.7.0)	-0.61 (0.13)	-0.51 (0.14)
Latitude		2.20 (1.40)		1.60		2.70		0.58		2.00
R ² Number of observations	0.2 63	0.23 63	0.24 62	0.25 62	0.19 63	0.24 63	0.3 66	0.3 66	0.27 64	0.3 64
	D	1					. 17. 4.11		Depe Varia Euro	ndent ible Is opean
Panel B		on Execu	tive in 19	onstraint		Democra	t Variable acy in 190	00	Settlen 19	100 10
European settlements in 1900	5.50 (0.73)	5.40 (0.93)			8.60 (0.90)	8.10 (1.20)				
Log European settler mortality	. ,		-0.82	-0.65		. ,	-1.22	-0.88	-0.11	-0.07
Latitude		0.33	(0.17)	3.60		1.60 (2.30)	(0.24)	7.60	(0.02)	0.87
R^2	0.46	0.46	0.25	0.29	0.57	0.57	0.28	0.37	0.31	0.47

TABLE 3-DETERMINANTS OF INSTITUTIONS

From: AJR, "The Colonial Origins of Comparative Development"

Number of observations

Conclusion

III. NATHAN NUNN

"THE LONG-TERM EFFECTS OF AFRICA'S SLAVE TRADES"

Nunn's Thesis

• The legacy of the slave trade adversely affects African economic development today.

Data Construction

- Shipping data provide estimates of number of slaves shipped from each coastal country of Africa.
- Some samples show ethnic composition of slaves (but usually not where they were shipped from).
- Assumes that "slaves shipped from a port within a country are either from that country or from countries directly to the interior."

Atlantic Ocean		AFRICA
$100,000 \Leftarrow$	Country A	Country B
		Country D
$250,000 \Leftarrow$	Country C	Country E

FIGURE I An Artificial Map of the West Coast of Africa

Possible Sources of Measurement Error

- Misassignment from his imputation procedure.
- Underestimation of slaves from the interior (because of higher mortality rates).
- Errors arising from small numbers of samples showing ethnicities.

Isocode	Country name	Trans- Atlantic	Indian Ocean	Trans- Saharan	Red Sea	All slave trades
AGO	Angola	3,607,020	0	0	0	3,607,020
NGA	Nigeria	1,406,728	0	555,796	59,337	2,021,859
GHA	Ghana	1,614,793	0	0	0	1,614,793
ETH	Ethiopia	0	200	813,899	633,357	1,447,455
SDN	Sudan	615	174	408,261	454,913	863,962
MLI	Mali	331,748	0	509,950	0	841,697
ZAR	Democratic	759,468	7,047	0	0	766,515
	Republic of Congo					
MOZ	Mozambique	382,378	$243,\!484$	0	0	625,862
TZA	Tanzania	10,834	$523,\!992$	0	0	$534,\!826$
TCD	Chad	823	0	409,368	$118,\!673$	$528,\!862$
[]						
MAR	Morocco	0	0	0	0	0
RWA	Rwanda	0	0	0	0	0
STP	São Tomé & Princi	pe 0	0	0	0	0
SWZ	Swaziland	0	0	0	0	0
SYC	Seychelles	0	0	0	0	0
TUN	Tunisia	0	0	0	0	0

TABLE IIESTIMATED TOTAL SLAVE EXPORTS BETWEEN 1400 AND 1900 BY COUNTRY

FIGURE III Relationship between Log Slave Exports Normalized by Land Area, ln(exports/area), and Log Real Per Capita GDP in 2000, ln y

	Dependent variable is log real per capita GDP in 2000, $\ln y$								
	(1)	(2)	(3)	(4)	(5)	(6)			
ln(exports/area)	-0.112^{***}	-0.076^{***}	-0.108^{***}	-0.085^{**}	-0.103^{***}	-0.128^{***}			
Distance from equator	(0.024)	0.016 (0.017)	(0.001) -0.005 (0.020)	(0.033) (0.019) (0.018)	(0.034) (0.023) (0.017)	(0.004) (0.017)			
Longitude		$0.001 \\ (0.005)$	-0.007 (0.006)	-0.004 (0.006)	-0.004 (0.005)	-0.009 (0.006)			
Lowest monthly rainfall		-0.001 (0.007)	0.008 (0.008)	$0.0001 \\ (0.007)$	-0.001 (0.006)	-0.002 (0.008)			
Avg max humidity		$0.009 \\ (0.012)$	$0.008 \\ (0.012)$	$0.009 \\ (0.012)$	$0.015 \\ (0.011)$	$\begin{array}{c} 0.013 \\ (0.010) \end{array}$			
Avg min temperature		-0.019 (0.028)	-0.039 (0.028)	-0.005 (0.027)	-0.015 (0.026)	-0.037 (0.025)			
ln(coastline/area)		0.085^{**} (0.039)	0.092^{**} (0.042)	0.095^{**} (0.042)	0.082^{**} (0.040)	0.083^{**} (0.037)			
Colonizer fixed effects	Yes	Yes	Yes	Yes	Yes	Yes			
Number obs. R^2	$\begin{array}{c} 52 \\ .51 \end{array}$	52 .60	42 .63	$\frac{52}{.71}$	52 .77	42 .80			

TABLE III Relationship between Slave Exports and Income

Some Influential Observations in Figure III

Possible Biases?

- Perhaps less developed areas were more affected by the slave trade.
- Perhaps <u>more</u> developed areas were more affected by the slave trade, and the greater development harmed them in the long run for reasons unrelated to the slave trade. (AJR, "Reversal of Fortune" *QJE*, 2002.)
- Non-classical measurement error?
- More?

Instruments

- "The sailing distance from the point on the coast that is closest to the country's centroid to the closest major market of the Atlantic slave trade."
- "The sailing distance from the point on the coast that is closest to the country's centroid to the closest of the two major slave destinations of the Indian Ocean slave trade."
- "The overland distance from a country's centroid to the closest port of export for the trans-Saharan slave trade."
- "The overland distance from a country's centroid to the closest port of export for the Red Sea slave trade."

FIGURE V Example Showing the Distance Instruments for Burkina Faso

TABLE IV ESTIMATES OF THE RELATIONSHIP BETWEEN SLAVE EXPORTS AND INCOME

	(1)	(2)	(3)	(4)
1				
First Stage. De	ependent varia	able is slave ex	ports, ln(expo	rts/area)
Atlantic distance	-1.31^{***}	-1.74^{***}	-1.32^{*}	-1.69**
	(0.357)	(0.425)	(0.761)	(0.680)
Indian distance	-1.10^{***}	-1.43^{***}	-1.08	-1.57^{*}
	(0.380)	(0.531)	(0.697)	(0.801)
Saharan distance	-2.43^{***}	-3.00^{***}	-1.14	-4.08^{**}
	(0.823)	(1.05)	(1.59)	(1.55)
Red Sea distance	-0.002	-0.152	-1.22	2.13
	(0.710)	(0.813)	(1.82)	(2.40)
F-stat	4.55	2.38	1.82	4.01
Colonizer fixed effects	No	Yes	Yes	Yes
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
Hausman test (<i>p</i> -value)	.02	.01	.02	.04
Sargan test $(p$ -value)	.18	.30	.65	.51

TABLE IV

ESTIMATES OF THE RELATIONSHIP BETWEEN SLAVE EXPORTS AND INCOME

	(1)	(2)	(3)	(4)
Second Sta	ge. Dependent v	ariable is log ind	come in 200	$0, \ln y$
ln(exports/area)	-0.208^{***}	-0.201^{***}	-0.286^{*}	-0.248^{***}
	(0.053)	(0.047)	(0.153)	(0.071)
	[-0.51, -0.14]	[-0.42, -0.13]	$[-\infty, +\infty]$	[-0.62, -0.12]
Colonizer fixed effects	No	Yes	Yes	Yes
Geography controls	No	No	Yes	Yes
Restricted sample	No	No	No	Yes
<i>F</i> -stat	15.4	4.32	1.73	2.17
Number of obs.	52	52	52	42
Qualitative Evidence and Mechanisms

- Slave trade lasted for about 500 years; formal colonial rule for about 75.
- Impact on ethnic fractionalization.
- Impact on state development.
- Impact on trust (Nunn and Wantchekon, AER, 2011).

FIGURE VI Relationship between Slave Exports and Current Ethnic Fractionalization

From: Nunn, "The Long-Term Effects of Africa's Slave Trades"

FIGURE VII Relationship between Slave Exports and Nineteenth-Century State Development

From: Nunn, "The Long-Term Effects of Africa's Slave Trades"

FIGURE VIII Paths of Economic Development Since 1950

From: Nunn, "The Long-Term Effects of Africa's Slave Trades"

Conclusion

IV. GREGORY CLARK

"WHY ISN'T THE WHOLE WORLD DEVELOPED? LESSONS FROM THE COTTON MILLS"

Overview of Clark

- Uses cotton textiles as a case study.
- Attempts to show that there were large differences in labor efficiency across countries.
- Investigates the possible factors that could explain this.
- Concludes that the source of the difference was local culture.

Textiles as a Case Study

- Strengths
 - Major industry, plentiful data, common across countries.
- Weaknesses
 - Might not be representative, data come from countries at different stages of industrialization.

Two Approaches to Deducing Labor Efficiency

- Approach 1: Look at relative costs and trade.
- Approach 2: Look directly at staffing levels per machine.

A. Approach 1 to Showing that Labor Was More Efficient in Britain

 Argue that higher wages would have put Britain at a huge competitive disadvantage if British workers weren't more efficient.

Country or Region	Weekly Wage Rate	Plant and Machinery (dollar/spindle)	Coal (dollar/ton)	Manufacturing Cost (England = 1.00)	Implied Profit Rate
New England	\$8.8	\$17.43	\$3.80	1.59	-8.9%
United States (South)	6.5	17.43	3.80	1.30	-0.7
England	5.0	12.72	2.50	1.00	8.0
Germany	3.8	18.48	4.88	1.00	7.9
France	3.7	16.54	4.67	0.95	9.5
Switzerland	3.7	24.80	6.62	1.15	4.7
Austro-Hungary	2.8	16.38	5.75	0.85	12.6
Spain	2.7	19.33	6.50	0.91	10.5
Mexico	2.6	19.27	10.00	0.94	9.6
Russia	2.4	20.69	7.20	0.91	10.3
Italy	2.4	16.00	7.25	0.81	13.8
Portugal	1.72	17.50	7.00	0.76	15.0
Japan	0.80	24.57	2.58	0.73	14.1
India	0.78	17.56	5.02	0.61	19.1
China	0.54	16.32	3.25	0.53	22.1
Share in costs in					
England	0.618	0.124	0.034		

Table 1COTTON TEXTILE COSTS AND PROFITS AS IMPLIED BY INPUT PRICES, c.1910

TABLE 2
IMPLIED PROFIT RATES IN COTTON TEXTILES ADJUSTING FOR CAPITAL
UTILIZATION, c.1910

Country or Region	Capital per Spindle	Hours per Year	Adjusted Capital per Spindle	Manufacturing Cost (England = 1.00)	Implied Profit Rate
New England	\$18.60	3000	\$17.62	1.57	-9.4%
United States (South)	18.60	3450	16.04	1.26	-0.8
England	15.06	2775	15.06	1.00	8.0
Germany	19.38	3000	18.35	0.99	8.3
France	17.93	3300	15.96	0.92	10.7
Switzerland	24.12	3250	21.41	1.10	5.3
Austro-Hungary	17.81	3300	15.86	0.83	14.1
Spain	20.02	4455	14.56	0.84	14.4
Mexico	19.98	6750	11.47	0.82	16.6
Russia	21.04	4061	16.13	0.84	13.5
Italy	17.52	3150	16.10	0.79	15.0
Portugal	18.65	3300	16.56	0.74	16.9
Japan	23.95	6526	13.36	0.62	25.2
India	18.70	3744	15.29	0.58	23.4
China	17.76	5302	11.93	0.48	32.9

Do you find this argument compelling?

B. Approach 2 to Showing that Labor Was More Efficient in Britain

• Look at number of machines a worker tended in various countries as a measure of efficiency.

Ring Spinning (1920s)

Country or Region	Average Weekly Wage	Loom- Equivalents per Worker	Index of Machines per Worker	Ring Spindles per Worker	Plain Looms per Worker
New England	\$8.8	2.97	1.55	902	8.0
Canada	8.8	2.53	1.41	750	6.0
United States (South)	6.5	2.65	1.44	770	6.0
Britain	5.0	2.04	1.00	625	3.8
Germany	3.8	1.28	0.63	327	2.9
France	3.7	1.11	0.81	500	2.8
Switzerland	3.7	1.40	0.70	450	2.7
Austro-Hungary	2.8	1.24	0.65	403	2.8
Spain	2.7	0.91	0.73	450	2.0
Mexico	2.6	1.15	0.77	540	2.5
Russia	2.4	1.10	0.77	450	2.0
Italy	2.4	0.88	0.76	436	2.0
Portugal	1.72	0.88	0.65	384	2.0
Egypt	1.69	0.81	0.39	240	1.5
Greece	1.38	0.46			
Japan	0.80	0.53	0.52	190	1.6
India	0.78	0.50	0.33	214	1.9
China	0.54	0.48	0.34	168	1.5
Peru		1.17	0.78	391	3.5
Brazil		0.88	0.67	527	3.0

TABLE 4MACHINES PER OPERATIVE, c.1910

Power Loom (1890)

Textile Mill

Country or Region	Average Weekly Wage	Loom- Equivalents per Worker	Index of Machines per Worker	Ring Spindles per Worker	Plain Looms per Worker
New England	\$8.8	2.97	1.55	902	8.0
Canada	8.8	2.53	1.41	750	6.0
United States (South)	6.5	2.65	1.44	770	6.0
Britain	5.0	2.04	1.00	625	3.8
Germany	3.8	1.28	0.63	327	2.9
France	3.7	1.11	0.81	500	2.8
Switzerland	3.7	1.40	0.70	450	2.7
Austro-Hungary	2.8	1.24	0.65	403	2.8
Spain	2.7	0.91	0.73	450	2.0
Mexico	2.6	1.15	0.77	540	2.5
Russia	2.4	1.10	0.77	450	2.0
Italy	2.4	0.88	0.76	436	2.0
Portugal	1.72	0.88	0.65	384	2.0
Egypt	1.69	0.81	0.39	240	1.5
Greece	1.38	0.46			
Japan	0.80	0.53	0.52	190	1.6
India	0.78	0.50	0.33	214	1.9
China	0.54	0.48	0.34	168	1.5
Peru		1.17	0.78	391	3.5
Brazil		0.88	0.67	527	3.0

TABLE 4MACHINES PER OPERATIVE, c.1910

Country or Region	Weekly Wage Rate	Machinery per Worker (loom- equivalent)	Corrected Yearly Labor Cost	Manufacturing Cost (England = 1.00)	Implied Profit Rate
New England	\$8.8	2.97	\$6.04	1.25	0.9%
Canada	8.8	2.53	7.10		
United States (South)	6.5	2.65	5.00	1.12	4.6
England	5.0	2.04	5.00	1.00	8.0
Germany	3.8	1.28	6.06	1.28	0.1
France	3.7	1.11	6.80	1.33	-1.9
Switzerland	3.7	1.40	5.39	1.36	0.0
Austro-Hungary	2.8	1.24	4.61	1.07	5.8
Spain	2.7	0.91	6.05	1.32	-0.7
Mexico	2.6	1.15	4.61	1.19	2.9
Russia	2.4	1.10	4.45	1.16	3.8
Italy	2.4	0.88	5.56	1.20	1.8
Portugal	1.72	0.88	3.99	1.04	7.0
Egypt	1.69	0.81	4.26		
Greece	1.38	0.46	6.12		
Japan	0.80	0.53	3.08	1.01	7.7
India	0.78	0.50	3.18	0.91	10.6
China	0.54	0.48	2.30	0.75	15.5

TABLE 3 IMPLIED COSTS AND PROFITS IN COTTON TEXTILES ADJUSTING FOR WORKER EFFICIENCIES, c.1910

C. What Might Explain the Different Staffing Levels We Observe? Explanations Not Related to Labor Itself Can the different staffing levels be explained by capital-labor substitution?

- Only makes sense to use more labor if it allowed foreign mills to save on other inputs, such as capital.
- Yet, we see higher staffing levels in areas where substituting labor for capital wasn't a possibility (doffing).

Doffing (1911)

Country	Wage	Hourly Output per Spindle (in ounces)	Hourly Output per Loom (in yards)
United States	\$8.0	0.601 oz.	5.17 yd.
England	5.0	0.651	6.07
Austria	2.8	0.487	
Italy	2.4	0.670	
Japan	0.80	0.628	5.96
India	0.78	0.562	
China	0.54	0.515	4.01

TABLE 5OUTPUT PER MACHINE PER HOUR, c.1910

 Low-wage countries were not getting great utilization of their capital except through running longer hours.

Can the different staffing levels be explained by raw material-labor substitution?

- Perhaps higher staffing levels made it possible to use lower-grade (cheaper) cotton.
- Yet, only a few high-staffing-level countries used low-grade cotton.

Yarn Count	United States	Britain	Japan	India	China
10-19	100	91		60	80
20-29	100	100	79	74	82
30-39	100	115	115	97	110
40-49	100	119	101	95	115
50	100	122		95	
60	100	115		122	
70	100	107		125	
100	100			200	

TABLE 6 RING YARN STRENGTH IN THE 1920s

 Japan, India, and China do not use poorer cotton in finer (higher) counts of yarn, yet they had higher staffing levels in those as well.

Can the different staffing levels be explained by different technologies?

- Most mills were made of imported technology.
 - Installed by British engineers.
 - Often used British managers and skilled workers to train local workers.
- Later development abroad and fast growth likely implied technology was *newer*, not older.

D. What Might Explain the Different Staffing Levels We Observe? Explanations Focusing on Labor

 Are there characteristics of labor that made workers less productive outside of Britain?

Could lower labor efficiency be explained by less experience?

- Wage profiles were not steeply upward-sloping.
- How does Clark measure experience?
 - Thinks it is lower where textile industry is growing faster.

Country or Region	Average Weekly Wage	Loom- Equivalents per Worker	Industry Growth Rate, 1890–1910	Average Years of Experience	Predicted Machines per Worker
New England	\$8.8	2.97	1.6%	8.6	109
Canada	8.8	2.53	2.4	8.1	108
United States (South)	6.5	2.65	9.4	5.2	100
Lancashire	5.0	2.04	0.9	9.2	110
Germany	3.8	1.28	3.1	7.6	105
France	3.7	1.11	1.7	8.5	109
Switzerland	3.7	1.40	-0.4	10.4	113
Austro-Hungary	2.8	1.24	2.6	7.9	107
Spain	2.7	0.91	2.0	8.3	108
Mexico	2.6	1.15	2.5	8.0	107
Russia	2.4	1.10	4.2	7.0	104
Italy	2.4	0.88	5.4	6.5	103
Japan	0.80	0.53	9.6	5.1	100
India	0.78	0.50	5.1	6.6	103
China	0.54	0.48	10.0	5.0	100
Brazil		0.88	11.3	4.7	99

TABLE 7GROWTH RATES, WORKER EXPERIENCE AND IMPLIED LABOR EFFICIENCY, 1910

Could lower labor efficiency be explained by lower inherent labor quality?

- Poor nutrition could make workers small or less strong. Could that matter?
- Clark's response: small is fine and firms could feed workers.
- Lack of correlation between immigrants' wages in America and efficiency in their home country. What does this imply?

Country of Origin	Efficiency of Textile Workers (home country)	Average U.S. Wage (England = 100)	Average Age	Age-Adjusted Wage (England = 100)
Canada	124	78	39.0	75
England	100	100	38.7	100
Germany	63	96	40.9	90
France	54	93	36.1	98
Switzerland	69	99		
Austro-Hungary	61	85	31.6	93
Spain	45	106	31.4	115
Mexico	56	90	32.7	102
Russia	54	80	30.7	95
Italy	43	80	29.6	98
Portugal	43	57	26.4	79
Greece	23	60	26.5	83
Japan	26	75	29.5	93

Table 8EARNINGS OF U.S. MALE IMMIGRANTS IN MANUFACTURING, 1910

Clark's Preferred Explanation: Local Effects (Culture)

- Workers refused to tend more machines in some countries even though they could.
- Cited lack of jobs for others:

The operatives in this mill refuse to attend to more machinery. I watched two ring frames for three minutes; there was not a single end down, yet the workpeople would not look after more than one side. They said that they are satisfied with the present wage, and that there are so many men who want work and cannot get it that it would be unfair if they were to attend to more machines.⁶⁸

FIGURE 1 LOOM-EQUIVALENTS PER WORKER IN THE COTTON INDUSTRY, 1910

From: Clark, "Why Isn't the Whole World Developed?"

Do you agree with Clark's conclusion?

- Argument by elimination may be problematic.
 - Even if no one factor explains observed differences in staffing levels, perhaps together they may explain a lot.
- Does it make sense that culture didn't stay with workers when they moved?

Possible Implications If Clark Is Right

- Major source of underdevelopment may have been inefficiency of labor rather than inability to absorb modern technology.
- Importance of local culture could explain why people moved, rather than why capital moved.
- Wages may not be the best guide to labor costs.
- Growth may reflect labor intensification as much as technological progress.