
        

EQUILIBRIA IN PRODUCTION ECONOMIES

CHARALAMBOS D. ALIPRANTIS1, MONIQUE FLORENZANO2, AND RABEE TOURKY3

1 Department of Economics, Krannert School of Management, Purdue University, 403 West State Street,
W. Lafayette, IN 47907-2056, USA;aliprantis@mgmt.purdue.edu
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Abstract. This paper studies production economies having a locally convex topological vector

commodity space ordered by a closed and generating convex cone such that the order intervals
are topologically bounded. The generally assumed lattice properties on the commodity–price

duality are replaced by an assumption of uniform properness of the Riesz–Kantorovich functional
associated with a list of continuous linear functionals. On such an economy, our assumptions are
quite general. In particular, consumers preferences are non-ordered, not necessarily monotone,

and we do not assume free-disposal. The equilibrium existence theorem established in this paper

is the most general for production economies in the literature.
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1. Introduction

This paper is the last in a series of papers [8, 9, 10] studying Walrasian equilibria without vector
lattice assumptions on the commodity–price duality of an economy. More precisely, this paper
extends to production economies results obtained in [10] for exchange economies.

In [9] and [10], we were addressing the equilibrium existence problem for exchange economies
having ordered topological vector commodity spaces. The main motivation for going from lattice
ordered topological vector spaces, the case usually considered in the literature, to this setting was
coming from Finance. In security models, one is given with a pair of function spaces, L and X,
where L is the portfolio space and X is the space of contingent claims, together with a linear
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operator R : L → X, one-to-one and positive, which pulls back the order intervals of R(L) to
closed and bounded subsets of L. The portfolio dominance ordering, a notion introduced in [4, 5],
is the only ordering which is relevant for purposes of economic analysis, especially for studying the
arbitrage freeness of security prices. But, when the portfolio space is reordered by the portfolio
dominance ordering, it is seldom a vector lattice and the existence of equilibrium cannot be deduced
from theorems which require lattice properties on the commodity space. Minimal conditions of
compatibility between order and topology of the commodity (portfolio) space were given in [9] and
[10] for completing a general equilibrium analysis of exchange models.

In this paper, we study the existence of general equilibrium for a production economy having an
ordered topological vector commodity space. To go from exchange models to production economies
is never easy. It suffices to recall the competitive challenge which lead after the seminal paper of
Mas-Colell [27] to the publication in 1987 of Zame’s paper[39] and Aliprantis–Brown–Burkinshaw’s
paper[3] and in 1989 of Richard’s paper [34]. Our assumptions on the economy are quite general.
In particular, preferences are non-ordered and we do not assume any monotonicity of preferences
or free disposal in production. Under (most often) stronger assumptions on the characteristics of
the economy, the equilibrium existence problem has been solved in two consecutive settings. In
the first one, introduced by Mas-Colell [27], the commodity space is is a topological vector lattice.
In the second one, introduced by Mas-Colell–Richard [29], the commodity space is an ordered
locally convex topological vector space such that both commodity space and price space are lattice
ordered. In these two settings, the equilibrium existence is obtained under properness assumptions
on the characteristics of the economy. Since its first introduction to economics by Mas-Colell in
[27] and [28], the formulation of properness has become more and more general [33, 23, 37, 38],
but the lattice properties of the commodity–price duality are always used in a nontrivial way in
the few papers [3, 39, 34, 38, 23] which address the equilibrium existence problem for production
economies.

In this paper, we replace these lattice properties by a condition of compatibility between order
and topology of the commodity space, stated in terms of properness of the Riesz–Kantorovich
functional associated with a finite list of continuous linear functionals, which is obviously satisfied
under these properties. The condition stated in this paper is stronger than the one used in our
previous papers for the exchange case. Also, since the commodity space is not assumed to be a
vector lattice, at least on the production side, properness has to be reformulated in a way which
does not depend on lattice properties of the underlying space.

Our paper is organized as follows. In section 2, we recall the notion of the Riesz–Kantorovich
functional associated with a finite list of (linear) functionals, a notion that we put in relation with
the concept of sup-convolution, well-known inoptimization. In section 3, we define the model and
posit assumptions as well on the commodity space as on the characteristics of the economy. The
commodity space is assumed to be a locally convex topological vector space ordered by a closed
and generating convex pointed cone such that the order intervals are topologically bounded. Mild,
but classical, assumptions are made on the economy. Let us emphasize here that we do not assume
any kind of monotonicity or transitivity on consumers’ preferences or free disposal in production.
Properness is defined as well for preferences as for production. Under a classical compactness
assumption, Edgeworth equilibria exist. Section 4 is devoted to their decentralization with linear
prices. For going from non-linear to linear decentralization, we introduce a condition of compati-
bility between order and topological structure of the commodity space stated in terms of uniform
properness of the Riesz–Kantorovich functional. A by-product of the decentralization result is a
quasiequilibium existence result. Existence of equilibrium is obtained under standard conditions
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of nontriviality and of irreducibility of the economy. In view of the generality of our assumptions,
this result extends any previous equilibrium existence result obtained under properness in the
Mas–Colell or in the Mas–Colell–Richard settings. Section 5 is devoted to examples which show
that our result allows to obtain existence of equilibrium in settings of economic interest which are
covered by no previous equilibrium existence result.

2. Mathematical preliminaries

For details regarding Riesz spaces that are not explained below we refer the reader to [6] and
[7]. This paper will utilize the notion of the Riesz–Kantorovich formula that was introduced in
[13] and used extensively in [14, 9, 10]. We shall briefly introduce this formula here and refer the
reader to [12] for a complete discussion regarding the Riesz–Kantorovich formula.

We start with the following classical result from the theory of partially ordered vector spaces
due to F. Riesz and L. V. Kantorovich.

Theorem 2.1 (Riesz–Kantorovich). If L is an ordered vector space with a generating cone and
the Riesz Decomposition Property,1 then the order dual L∼ is a Riesz space and for each f, g ∈ L∼

and x ∈ L+ its lattice operations are given by:

1. [f ∨ g](x) = sup
{
f(y) + g(z) : y, z ∈ L+ and y + z = x

}
.

2. [f ∧ g](x) = inf
{
f(y) + g(z) : y, z ∈ L+ and y + z = x

}
.

In particular, note that if L has the Riesz Decomposition Property, then for any finite collection
of linear functionals f1, f2, . . . , fm ∈ L∼ their supremum in L∼ at each x ∈ L+ is given by

[ m∨

i=1

fi

]
(x) = sup

{ m∑

i=1

fi(xi) : xi ∈ L+ for each i and
m∑

i=1

xi = x
}

. (?)

For any positive integer m and x ∈ L+ define

Amx =
{

(x1, . . . , xm) ∈ Lm+ :

m∑

i=1

xi = x
}

.

The formula (?) that gives the supremum of the order bounded linear functionals f1, . . . , fm is
called the Riesz–Kantorovich formula of these functionals. The useful observation here is that if
each fi is an arbitrary function from L+ to (−∞,∞], then the right-hand side of (?) still defines
an extended real number for each x ∈ L+. That is, the formula appearing in (?) defines a function
from L+ to (−∞,∞] called the Riesz–Kantorovich functional of the m-tuple of functions
f = (f1, . . . , fm) and denoted Rf . In other words, Rf : L+ → (−∞,∞] is defined by

Rf (x) := sup
{ m∑

i=1

fi(xi) : (x1, . . . , xm) ∈ Amx
}

for each x ∈ L+.
If each fi is a function that carries order intervals to bounded from above subsets of R, then the

Riesz–Kantorovich functional is real-valued. Moreover, if each fi is super-additive and positively

1The Decomposition Property states that if x, y1, y2 ∈ L+ satisfy 0 ≤ x ≤ y1 + y2, then there exist elements
x1 and x2 such that 0 ≤ x1 ≤ y1, 0 ≤ x2 ≤ y2 and x = x1 + x2. The order dual L∼ is the vector space consisting
of all linear functionals on L which map order intervals of L to order bounded subsets of R, ordered by the relation
f ≥ g whenever f(x) ≥ g(x) for all x ∈ L+.
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homogeneous, then the Riesz–Kantorovich functional Rf is also super-additive and positively ho-
mogeneous; in particular, it is a concave function. Using as prices the Riesz–Kantorovich functional
of a list of personalized prices, a new theory of value was presented in [14].

Let us now associate with each fi : L+ → (−∞,∞) the function f̂i : L→ [−∞,∞) defined by

f̂i(x) :=

{
fi(x) if x ∈ L+

−∞ otherwise .

If each fi is finite-valued, it is easy to recognize in Rf (x) for x ∈ L+ the value at x of the

sup-convolution2 of functions f̂i defined by

[
∇mi=1f̂i

]
(x) := sup

{ m∑

i=1

f̂i(xi) :

m∑

i=1

xi = x
}

.

Definition 2.2. We will say that Rf is exact at x with respect to a vector (x1, . . . , xm) ∈ ÃLm+
satisfying x =

∑m
i=1 xi, if the sup-convolution is exact at x with respect to (x1, . . . , xm) ∈ Lm+ .

That is, if

Rf (x) =
[
∇mi=1f̂i

]
(x) =

m∑

i=1

f̂i(xi) =

m∑

i=1

fi(xi) .

Let 〈X, X ′〉 be a dual system and let f ∈ RX . Recall that a vector y′ ∈ X ′ is called a
supergradient of f at x if f(x) is finite and f(y)− f(x) ≤ 〈y−x, y′〉 for all y ∈ X. The (possibly
empty) set of all supergradients of f at x is called the superdifferential at x of the function f
and denoted ∂f(x).

The following result (see for example [26, Proposition 6.6.4]) will be used in our work.

Theorem 2.3 (Moreau). Assume that 〈X, X ′〉 is an arbitrary dual system. For each i = 1, . . . , m
let gi : X → [−∞,∞] be a non identically equal to −∞ function. If the sup-convolution ∇mi=1gi is
exact at x with respect to some (x1, . . . , xm) ∈ Xm that satisfies x =

∑m
i=1 xi, then

∂
[
∇mi=1gi

]
(x) =

m⋂

i=1

∂gi(xi).

3. The economic model

In what follows, if M is an ordered linear space, then for the sake of notational convenience,
M+ or M+ will denote the positive cone of M .

The commodity space of our model is an ordered linear vector space L equipped with a
Hausdorff locally convex topology τ such that:

A1: The positive cone L+ of L is generating (i.e., L = L+ − L+) and τ -closed.
A2: The order intervals of L are τ -bounded.

2 Let f ∈ RL and g ∈ RL be extended real-valued functions. Using the convention +∞+(−∞) = −∞+(+∞) =

−∞, the formula [f∇g](x) = sup
{
f(y) + g(z) : y, z ∈ L and y + z = x

}
defines an extended real-valued function

f∇g called the sup-convolution of f and g. The expression f∇g is also called by Rockafellar and Wets [35] the hypo-
addition of functions f and g, because if hypo f denotes the hypograph of f , one has hypo(f∇g) = hypo f +hypo g,
as long as the supremum defining [f∇g](x) is attained when finite.
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The topological dual of (L, τ) (i.e., the vector space of all τ -continuous linear functionals on L)
will be denoted L′. The algebraic dual of L (i.e., the vector space of all linear functionals on L) is
denoted L∗. The order dual of L (i.e., the vector space of all order-bounded linear functionals on
L) is denoted L∼. Since every order interval of L is τ -bounded, it follows that L′ ⊆ L∼ ⊆ L∗.

Assumptions A1 and A2 are satisfied by the following ones used by Mas-Colell–Richard [29]
and many others:

B1: L is a vector lattice whose positive cone L+ is τ -closed; and
B2: L′ is a vector sublattice of L∼.

Both sets of assumptions are implied by Mas-Colell’s assumption in [27] and [28] that L is a
topological vector lattice. To see this, note that if L is a topological vector lattice, then B1 simply
follows from the continuity of lattice operations, and B2 follows from the Nakano–Roberts theorem
(see [7, Theorem 2.22]). On the other hand, B2 implies that the cone L′+ is generating, which
is equivalent the fact that the cone L+ is a normal cone for the weak topology σ(L, L′), and the
latter implies that the order intervals are σ(L, L′)-bounded, thus τ -bounded (see [32, Chapter 2,
Corollary 1.23 and Proposition 1.4, and 2.1 for the definition of normal cones]). The assumption
that L is a vector lattice and B1 obviously imply A1.

On L as commodity space, let us consider a private ownership production economy

E =
((

Xi, Pi, ωi
)
i∈I , (Yj)j∈J , (θij)i∈I,j∈J

)

where I = {1, . . . , m} is a finite set of m (≥ 2) consumers, J = {1, . . . , n} is a finite set of n (≥ 1)
producers. Each consumer i is characterized by a non-empty consumption set Xi ⊆ L, an
initial endowment ωi ∈ Xi and an irreflexive preference correspondence Pi : Xi→→Xi, i.e.,
xi /∈ Pi(xi) for each xi ∈ Xi. Each producer j is characterized by a non-empty production set
Yj ⊆ L. For every producer and each consumer, the firm shares 0 ≤ θij ≤ 1 classically represent a
contractual claim of consumer i to the profit of producer j and

∑
i∈I θij = 1 for each j ∈ J . In a

core and Edgeworth equilibrium approach, the relative shares θij reflect consumers’ stockholdings
that represent proprietorships of production possibilities and θijYj is the portion of the j producer’s
technology set at i’s disposal.

Let ω =
∑
i∈I ωi be the total endowment, and let Aω be the set of all feasible (or

attainable) allocations of E , that is,

Aω =
{

(x, y) =
(
(xi)i∈I , (yj)j∈J

)
∈
∏

i∈I
Xi ×

∏

j∈J
Yj :

∑

i∈I
xi = ω +

∑

j∈J
yj

}
.

The set Xω, the projection ofAω on
∏
i∈I Xi,

3 is the set of all feasible consumption allocations.
We recall the following standard notions of equilibria for an economy E .

Definition 3.1. A 3-tuple (x, y, p) consisting of a feasible allocation (x, y) and a non-zero linear
functional p is said to be:

1. a quasi-equilibrium, if
(a) for every i ∈ I we have p(xi) = p(ωi) +

∑
j∈J θijp(yj) and xi ∈ Pi(xi) implies p(xi) ≥

p(xi), and
(b) for every j ∈ J and every yj ∈ Yj we have p(yj) ≤ p(yj);

2. an equilibrium, if it is a quasi-equilibrium and if xi ∈ Pi(xi) implies p(xi) > p(xi).

3 That is, Xω =
{
x = (xi)i∈I ∈

∏
i∈I Xi :

∑
i∈I xi = ω +

∑
j∈J yj for some (yj)j∈J ∈

∏
j∈J Yj}.
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Definition 3.2. A quasi-equilibrium (x, y, p) is said to be nontrivial, if for some i ∈ I we have

inf{p(zi) : zi ∈ Xi} < p(xi).

In this paper, we will be interested only in nontrivial quasi-equilibria. If (x, y, p) is some triv-
ial quasi-equilibrium, then for every feasible allocation (x, y), the pair

(
(x, y), p

)
is also a quasi-

equilibrium. On the other hand, if the quasi-equilibrium (x, y, p) is nontrivial, then it is well-known
that, under some continuity condition on preferences or concavity for utility functions, and some
irreducibility assumption on the economy, the quasi-equilibrium (x, y, p) is actually an equilibrium.

The following notions of optimality are also standard.

Definition 3.3. A (feasible) consumption allocation x ∈ Xω is said to be:

1. weakly Pareto optimal, if there is no feasible consumption allocation x ∈ Xω satisfying
xi ∈ Pi(xi) for each i ∈ I,

2. a core allocation, if it cannot be blocked by any coalition in the sense that there is no
coalition S ⊆ I and some x ∈∏i∈S Xi such that:
(a)

∑
i∈S xi ∈

∑
i∈S ωi +

∑
i∈S
∑
j∈J θijYj, and

(b) xi ∈ Pi(xi) for all i ∈ S,
3. an Edgeworth equilibrium, if it belongs to the core of every r-fold replica of E,4
4. a fuzzy core allocation, if there exist no τ = (τi)i∈I ∈ [0, 1]I \ {0} and x ∈ ∏i∈I Xi such

that:
(a)

∑
i∈I τixi ∈

∑
i∈I τiωi +

∑
i∈I τi

∑
j∈J θijYj, and

(b) xi ∈ Pi(xi) for all i ∈ I with τi > 0.

From now on, we impose on E the following conditions.

ω-properness: That is,
1. For each consumer i, the consumption set Xi is convex, and ω =

∑
i∈I ωi > 0.

2. For each i and every weakly Pareto optimal consumption allocation x = (xi)i∈I , xi ∈
cl Pi(xi), Pi(xi) is open in Xi for some linear topology on L (or is induced by a concave
utility function) and is ω-proper at xi in the following sense adapted from Tourky [37]:

there exist in L a convex set P̂i(xi) and a convex set Zi(xi) such that

(a) the vector xi + ω is a τ -interior point of P̂i(xi),

(b) P̂i(xi) ∩ Zi(xi) = Pi(xi), and
(c) xi, 0, ωi ∈ Zi(xi), Zi(xi) + L+ ⊆ Zi(xi),
(d) for every u > 0 and every couple {zi, z′i} of elements of Zi(xi), if −u ≤ zi, −u ≤ z′i

then there exists z ∈ Zi(xi) such that −u ≤ z ≤ zi and −u ≤ z ≤ z′i.
3. For each producer j, the production set Yj is convex and 0 ∈ Yj .
4. For each j and every yj ∈ Yj associated with a weakly Pareto optimal consumption

allocation, Yj is ω-proper at yj in the following sense adapted from Tourky [38]:

there exist in L a convex set Ŷj(yj) and a convex set Zj(yj) such that

(a) the vector yj − ω is a τ -interior point of Ŷj(yj),

(b) Ŷj(yj) ∩ Zj(yj) = Yj , and
(c) 0 ∈ Zj(yj) and Zj(yj)− L+ ⊆ Zj(yj),

4 The ideas in this definition go back to Debreu–Scarf [19]. An important reference is also [17]. Edgeworth
equilibria were first introduced and studied in [2].
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(d) for every u > 0 and every couple {zj , z′j} of elements of Zj(yj), if zj ≤ u, z′j ≤ u
then there exists z ∈ Zj(yj) such that zj ≤ z ≤ u and z′j ≤ z ≤ u.

Compactness: For some Hausdorff linear topology σ on L, the set Xω of all feasible con-
sumption allocations is σm-compact and preferences have σ-open (in Xi) lower sections
P−1
i (xi) = {x′i ∈ Xi : xi ∈ Pi(x

′
i)}.

At this stage, some comments on our properness assumptions are in order.

In our hypothesis, ω-properness of preferences at a component of a (feasible) weakly Pareto
optimal consumption allocation is stated in a general form for the sake of generality and symmetry
with our definition of ω-properness of production sets. In the classical case, the consumption sets
Xi and the sets Zi(xi) all coincide with the positive cone L+ of the commodity space L which
obviously satisfies the assumptions required for the sets Zi(xi). The interest of our definition is to
allow for more general consumption sets. It is worth noticing that if the commodity space L is a
Riesz space, then our assumptions on the sets Zi(xi) are equivalent to Tourky’s assumption in [37]
that each Zi(xi) is a convex lattice containing 0, ωi, xi and satisfying Zi(xi) + L+ ⊆ Zi(xi). Let
us stress that our assumptions do not imply that L+ is a lattice cone.

The sets Zj(yj) which are involved in the definition of ω-properness of production sets at a
production component of a weakly Pareto optimal allocation correspond to the pretechnology sets
defined by Mas-Colell [28] and used by Richard [34]. In Mas-Colell [28] and Richard [34], the
pretechnology sets depend on j but not on a particular yj . As above, if the commodity space L
is a Riesz space, then our assumptions on the sets Zj(yj) are equivalent to Tourky’s assumption
in [38] that each Zj(yj) is a convex lattice containing 0, yj and satisfying Zj(yj) − L+ ⊆ Zj(yj).
When the commodity space is an ordered vector space but not a Riesz space, then pretechnology
sets equal to the negative cone −L+ satisfy obviously our assumptions but are not the only one
such examples.

To conclude this section, let us remark that it easily follows from the previous definitions that
every equilibrium consumption allocation is an element of the fuzzy core and, consequently, an
Edgeworth equilibrium, a core allocation and a weakly Pareto optimal allocation. The following
lemma follows from the previous assumptions and Florenzano [21].

Lemma 3.4. In our economy, Edgeworth equilibria exist and belong to the fuzzy core.

Exactly as in [15], one can prove that if preference correspondences are derived from quasiconcave
utility functions defined on general consumption sets, our compactness condition can be replaced
by a weaker compactness assumption made in the utility space on the “utility set”.5

The next section is devoted to look at sufficient conditions on the order structure of the com-
modity space that will guarantee for our economy the validity of the core equivalence theorem
(first stated by Debreu–Scarf [19] for a finite dimensional economy).

4. Decentralizing Edgeworth equilibria

For the discussion of this section, we fix an Edgeworth equilibrium consumption allocation
(xi)i∈I , thus a fuzzy core consumption allocation of E , and (yj)j∈J , the associated production

5 That is, the set of feasible and individually rational utility vectors.
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allocation. Such an allocation
(
(xi)i∈I , (yj)j∈J

)
exists by Lemma 3.4. The proof of its possible

decentralization by prices in L′ will adapt ideas of [22, Chapter 5.3.4] where is proved the decen-
tralization of Edgeworth equilibria of an ω-proper production economy defined on a vector lattice
commodity space satisfying B1 and B2. For technical details not covered in this paper, we refer
to this chapter.

Since L+ is by A1 generating, we can choose u > 0 in L such that the order interval [−u, u]
contains xi, ωi, yj for all i ∈ I and j ∈ J . Now consider the ordered vector subspace Lu =⋃
λ>0 λ[−u, u] equipped with the order topology. This space is Archimedean (a property inherited

from L of which the positive cone is τ -closed) and has u as an order unit.6 Its order topology (i.e.,
the finest locally convex topology on Lu for which every order interval is bounded) is normable
(see Schaefer [36, Chapter V 6.2]). More precisely, the gauge ‖ · ‖u of [−u, u], defined for each
z ∈ Lu by

‖z‖u = inf
{
λ > 0: − λu ≤ z ≤ λu

}
,

is a norm on Lu that generates the order topology whose closed unit ball is precisely the order
interval [−u, u] and u is an interior point of L+

u = Lu ∩L+. Moreover, it follows from A2 (namely
from the fact that [−u, u] is τ -bounded) that on Lu, the order topology is finer than the topology
induced by τ . In addition, it is not difficult to see that the cone L+

u is ‖ · ‖u-closed in Lu.
7

Let Eu be the economy E restricted to Lu in an obvious way. For each consumer i, Xu
i = Xi∩Lu,

and for each xi ∈ Xu
i , Pu

i (xi) = Pi(xi) ∩ Lu; for each producer j, Y u
j = Yj ∩ Lu. It is easily seen

that the consumption allocation (xi)i∈I is an Edgeworth equilibrium and belongs to the fuzzy core
of Eu. It follows from the ω-properness of E that for each i and any 0 < α ≤ 1, the vector xi + αω
belongs to the norm-interior of Pu

i (xi). It thus follows from the standard decentralization result in
presence of an interiority property that there exists a nonzero pu ∈ (Lu, ‖ · ‖u)′ such that (x, y, pu)
is a quasi-equilibrium of the restricted economy Eu and pu(ω) > 0.

Before going further, let us recall an extension lemma due to Podczeck [33] whose a proof can
be found in [22, Lemma 5.3.1, p. 134]. In [33], this lemma is used for deducing the existence of
equilibria for a proper exchange economy defined on a vector lattice commodity space satisfying
B1 and B2 from the equilibrium existence in the economy restricted to the order ideal generated
by the total endowment.

Lemma 4.1 (Podczeck). Let (L, τ) be an ordered topological vector space, let K be a vector sub-
space of L (endowed with the induced order), let A be a convex subset of K such that A+K+ ⊆ A,
let V be a convex τ -open subset of L such that V ∩ A 6= 6©, and let a ∈ A ∩ cl V . If p is a linear
functional on K satisfying

p · a ≤ p · x, for all x ∈ V ∩A,

then there exists some π ∈ L′ such that π|K ≤ p, and

p · (a− x) = π · (a− x) for each x ∈ A with x ≤ a .

The following obvious consequence of the preceding lemma was stated in [23].

6That is, the order interval [−u, u] is radial at the origin.
7 Indeed, if {xn} ⊆ L+ satisfies − 1

n
u ≤ x − xn ≤ 1

n
u for all n, then from x = (x − xn) + xn ≥ x − xn ≥ − 1

n
u

and the Archimedean property it follows that x ≥ 0.
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Corollary 4.2. Let (L, τ) be an ordered topological vector space , let K be a vector subspace of L
(endowed with the induced order), let A be a convex subset of K such that A−K+ ⊆ A, let V be
a convex τ -open subset of L such that V ∩A 6= 6©, and let a ∈ A ∩ cl V . If p is a linear functional
on K satisfying

p · a ≥ p · x, for all y ∈ V ∩A ,

then there exists some π ∈ L′ such that π|K ≤ p, and

p · (a− y) = π · (a− y) for each y ≥ a, y ∈ A .

Our next step associates with the quasi-equilibrium price pu a finite list of τ -continuous linear
functionals πu =

(
(πui )i∈I , (πuj )j∈J

)
defined on the whole commodity space. These continuous

linear functionals can be thought of as personalized supporting prices for each consumer and each
producer at the corresponding component of the allocation (x, y).

Proposition 4.1. In our economy, there exist (πui )i∈I , (πuj )j∈J in L′ such that:

1. For each consumer i we have
(a) πui ≤ pu on Lu,

(b) πui · P̂i(xi) ≥ πui · xi , and
(c) if zi ∈ Zi(xi) ∩ Lu satisfies zi ≤ xi, then

pu · (xi − zi) = πui · (xi − zi) = Rπu(xi − zi) .

2. For each producer j we have
(a) πuj ≤ pu on Lu,

(b) πuj · Ŷj(yj) ≤ πuj · yj , and
(c) if zj ∈ Zj(yj) ∩ Lu satisfies zj ≥ yj , then

pu · (zj − yj) = πuj · (zj − yj) = Rπu(zj − yj) .

3. Moreover,
(a) Rπu ≤ pu on Lu, and

(b) if v ≤ ω satisfies v =
∑
i∈I vi −

∑
j∈J wj ∈

[∑
i∈I
(
Zi(xi) ∩ Lu

)
−∑j∈J

(
Zj(yj) ∩ Lu

)]
,

then

pu(ω − v) = Rπu(ω − v) .

Proof. Using Lemma 4.1 and its corollary with K = Lu and for each i, a = xi, A = Zi(xi) ∩ Lu,

V = int P̂i(xi), for each j, a = yj , A = Zj(yj)∩Lu, V = int Ŷj(yj), the existence of (πui )i∈I , (πuj )j∈J
in L′ satisfying (1), (2) and (3)(a) is a straightforward consequence of the fact that (x, y, pu) is
a quasi-equilibrium of the restricted economy Eu and of the ω-properness assumptions at each
component of the allocation (x, y).

To prove (3)(b), assume that v ≤ ω, v =
∑
i∈I vi −

∑
j∈J wj with each vi ∈ Zi(xi) ∩ Lu and

each wj ∈ Zj(yj) ∩ Lu. Let zi ∈ Zi(xi) ∩ Lu be such that zi ≤ {vi, xi} and zj ∈ Zj(yj) ∩ Lu be
such that zj ≥ {wj , yj}. Such zi and zj exist in view of the definition of Lu and our assumptions
on sets Zi(xi) and Zj(yj). On one hand, using (1)(c), (2)(c) and the superadditivity of Rπu , it
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follows from (1)(a) and (2)(a) that

(pu −Rπu)(ω − v) = (pu −Rπu)
(∑

i∈I
xi −

∑

j∈J
yj −

∑

i∈I
vi +

∑

j∈J
wj

)

≤ (pu −Rπu)
(∑

i∈I
(xi − zi) +

∑

j∈J
(zj − yj)

)
= 0 .

On the other hand, it follows also from (1)(a) and (2)(a) that (pu−Rπu)(ω−v) ≥ 0, which implies
(pu −Rπu)(ω − v) = 0

The following corollary can be seen as an analogue for the production economy Eu of Proposition
5.1 in [9] which extends at several instances statement (1) of Theorem 7.5 in [14] .

Corollary 4.3. We have in addition:

1. xi ∈ Pu
i (xi) =⇒Rπu(xi − zi) ≥ Rπu(xi − zi) for every zi ∈ Zi(xi) ∩ Lu, zi ≤ {xi , xi }.

2. yj ∈ Y u
j =⇒Rπu(zj − yj) ≥ Rπu(zj − yj) for every zj ∈ Zj(yj) ∩ Lu, zj ≥ {yj , yj }.

3. If for each i, z′i ∈ Zi(xi) ∩ Lu, z′i ≤ {ωi , xi}, if for each j, z′j ∈ Zj(yj) ∩ Lu, z′j ≥ {0, yj},
then
(a) Rπu(ω −

∑
i∈I z′i +

∑
j∈J z′j) =

∑
i∈I πui (xi − z′i) +

∑
j∈J πuj (z′j − yj), and

(b) for each i, πui · (xi − z′i) +
∑
j∈J θijπ

u
j · (z′j − yj) ≥ Rπu(ωi − z′i +

∑
j∈J θijz

′
j).

Proof. To prove (1), let us assume xi ∈ Pu
i (xi) and zi ∈ Zi(xi) ∩ Lu,zi ≤ {xi , xi }. Recall that

Pi(xi) = P̂i(xi) ∩ Zi(xi), thus that Pu
i (xi) = P̂i(xi) ∩ Zi(xi) ∩ Lu. We then easily deduce from

Proposition 4.1 that:

Rπu(xi − zi) ≥ πui · (xi − zi) ≥ πui · (xi − zi) = Rπu(xi − zi).

The proof of (2) is done symmetrically. The proof of (3) goes as follows.
Using the superadditivity of Rπu , the last assertion of Proposition 4.1, and assuming that for

each i, z′i ∈ Zi(xi) ∩ Lu, z′i ≤ {ωi , xi}, and for each j, z′j ∈ Zj(yj) ∩ Lu, z′j ≥ {0, yj},
we get:

pu(ω −
∑

i∈I
z′i +

∑

j∈J
z′j) = Rπu(ω −

∑

i∈I
z′i +

∑

j∈J
z′j) ≥

∑

i∈I
Rπu(xi − z′i) +

∑

j∈J
Rπu(z′j − yj)

=
∑

i∈I
πui (xi − z′i) +

∑

j∈J
πuj (z′j − yj) = pu(ω −

∑

i∈I
z′i +

∑

j∈J
z′j),

which proves the first assertion of (3).
Finally, recall that (x, y, pu) is a quasi-equilibrium of Eu. We thus have for every i,

pu · xi = pu · ωi +
∑

j∈J
θijpu · yj .(4.1)

From (4.1), using (1)(c) and (2)(c) of Proposition 4.1, we deduce easily from that for each i,

Rπu(xi − z′i) +
∑

j∈J
θijRπu(z′j − yj) = pu · (xi − z′i) +

∑

j∈J
θijpu · (z′j − yj)

= pu · (ωi − z′i) +
∑

j∈J
θijpu · z′j ≥ Rπu

(
ωi − z′i +

∑

j∈J
θijz

′
j

)
,
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which completes the proof.

Let us now recall some notions of properness for functions on L+.

Definition 4.4. Let v ∈ L+ be such that v > 0. We say that a function f : L+ → R is:

1. v-proper at some x ∈ L+, if there exists a convex set F such that:
(a) x + v is an interior point of F , and
(b) F ∩ L+ = {y ∈ L+ : f(y) > f(x)}.

2. v-pointwise proper at x ∈ L+, if there exists an open pointed convex cone Γx such that:
(a) −v ∈ Γx, and
(b) (x− Γx) ∩

{
y ∈ L+ : f(y) > f(x)

}
= 6©.

Considering the set {y ∈ L+ : f(y) > f(x)} as a preferred set for a preference correspondence
defined on L+ by the utility function f , the reader recognizes in these definitions the usual notions
of v-pointwise properness as defined by Mas-Colell [27] and of v- properness as defined by Tourky
[37]. Mas-Colell [27] defines uniform properness on a subset X of L+ as properness at every x ∈ X
with a properness vector and a properness cone independent of x.8 The definition of uniform
v-properness given here is quite similar.

Definition 4.5. The function f : L+ → R is uniformly v-proper on X ⊂ L+ if for every x ∈ X
there exist a convex set Fx and a τ -neighborhood V of 0 (independent of x) such that

a. x + v + V ⊆ Fx, and
b. Fx ∩ L+ = {y ∈ L+ : f(y) > f(x)}.
We now introduce the following additional assumption of compatibility between the order struc-

ture and the topology τ of the commodity space of our economy.

A3: For any finite list f of continuous linear functionals (fk)
K
k=1 such that fk(ω) > 0 for each

k, the Riesz–Kantorovich functional Rf is uniformly ω-proper at any point ω′ ≥ ω, provided
that it is exact at this point.

Remark 4.6. This hypothesis is automatically satisfied under the assumptions B1 and B2, and
a fortiori if the commodity space is a locally solid Riesz space. Indeed, it follows from Theorem
2.1 and Assumptions B1, B2 that the Riesz–Kantorovich functionals are linear and τ -continuous.
Assume now that f is a finite list of continuous linear functionals (fk)

K
k=1 such that fk(ω) > 0 for

each k (which implies Rf (ω) > 0). For each ω′ ∈ L+, define Fω′ = {y ∈ L : g(y) > g(ω′)}, where
g is the continuous linear functional which coincides with Rf on L+. If V is a τ -neighborhood of
0 such that g(ω + V ) > 0, then g(ω′ + ω + V ) > g(ω′), thus ω′ + ω + V ⊆ Fω′ , while Fω′ ∩ L+ =
{y ∈ L : Rf (y) > Rf (ω′)}.

Proposition 4.2. Under A3, there exists a price system πu ∈ L′ such that πu·ω > 0 and (x, y, πu)
is a quasi-equilibrium of Eu.
Proof. Let us consider the set Ω of all ω′ = ω−∑i∈I z′i+

∑
j∈J z′j , where for each i, z′i ∈ Zi(xi)∩Lu,

z′i ≤ {0, ωi , xi}, and for each j, z′j ∈ Zj(yj)∩Lu, z′j ≥ {0, yj}. This set is nonempty in view of the
definition of Lu and our assumptions on Zi(xi) and Zj(yj). It is directed by the relation

ω′′ ≥ ω′ if and only if for each i and j, z′′i ≤ z′i and z′′j ≥ z′j .

8If v is the properness vector, recall that Mas-Colell’s uniform properness on L+ implies v-properness (see Tourky

[37]).
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Moreover, if ω′ ∈ Ω then z′i ≤ 0 for each i and z′j ≥ 0 for each j imply ω′ ≥ ω > 0. From (3)
in Corollary 4.3, it follows that the Riesz–Kantorovich functional Rπu is exact at each ω′ ∈ Ω.
From Proposition 4.1, it is easily deduced that for each i, either πui = 0 or πui · ω > 0, that for
each j, either πuj = 0 or πuj · ω > 0, that Rπu(ω) = pu(ω) > 0, thus that at least one of the πui ,
πuj is nonzero. Set P (ω′) = {z ∈ L+ : Rπu(z) > Rπu(ω′)}. Applying Assumption A3, there exist

a 0-neighborhood V and for each ω′ ∈ Ω, a convex set P̂ (ω′) such that ω′ + ω + V ⊆ P̂ (ω′) and

P (ω′) = L+ ∩ P̂ (ω′).
Moreover,

Rπu(ω′ + αω) ≥ Rπu(ω′) + αRπu(ω) > Rπu(ω′) every 0 < α ≤ 1,

so that ω′ belongs to the closure of P̂ (ω′). Now, if z ∈ P̂ (ω′)∩L+
u , thenRπu(z) > Rπu(ω′) = pu(ω

′).
From Rπu ≤ pu on Lu, it follows that pu · z > pu ·ω′. If we define X = {z ∈ L+

u : pu · z ≤ pu ·ω′)},
the last observation can be rephrased as X ∩ P̂ (ω′) = 6©, so that to each ω′ ∈ Ω, we can associate

a nonzero πω′ ∈ L′ which separates P̂ (ω′) and X, that is,

πω′ ·X ≤ πω′ · ω′ ≤ πω′ · P̂ (ω′).(4.2)

Since ω′ + ω is an interior point of P̂ (ω′), we have πω′ · ω > 0, and we can normalize prices letting

pu · ω = Rπu(ω) = πω′ · ω = 1.(4.3)

Let Lω′ be the ordered vector subspace Lω′ =
⋃
λ>0 λ[−ω′, ω′]. Clearly, Lω′ ⊂ Lu. We first claim

that πω′ = pu on Lω′ . Indeed, for every z ∈ L+
u , we know that

pu · z ≤ pu · ω′ =⇒ πω′ · z ≤ πω′ · ω′.
So, using the existence of Lagrange multipliers for a convex programming problem,9 there exist two
real numbers λ1 ≥ 0 and λ2 ≥ 0 not all equal to zero such that λ1[πω′ ·z−πω′ ·ω′] ≤ λ2[pu ·z−pu ·ω′]
for every z ∈ L+

u . From πω′ ·ω = pu ·ω > 0, we easily deduce that (λ1, λ2)À 0. Letting successively
z = 0 and z = 2ω′, we also see that for some λ > 0, πω′ ·ω′ = λpu ·ω′ and πω′ · z ≤ pu · z for every
z ∈ L+

u . The previous inequality holds in particular for every z ∈ L+
ω′ . Since ω′ is an interior point

(for the order topology) of L+
ω′ , it follows that πω′ = λpu on Lω′ . Recalling that πω′ · ω = pu · ω,

it follows that λ = 1.
Recalling that for each i, we have pu · xi = pu · ωi +

∑
j∈J θijpu · yj , that is,

pu · (xi − z′i) +
∑

j∈J
θijpu · (z′j − yj) = pu · (ωi − z′i) +

∑

j∈J
θijpu · z′j ,

we deduce from our first claim:

πω′ · (xi − z′i) +
∑

j∈J
θijπω′ · (z′j − yj) = πω′ · (ωi − z′i) +

∑

j∈J
θijπω′ · z′j ,

and, thus, for each i and for every ω′ ∈ Ω,

πω′ · xi = πω′ · ωi +
∑

j∈J
θijπω′ · yj .(4.4)

We next claim that for some µ > 0 (depending on ω′), µπω′ is a supergradient of Rπu at
ω′. Indeed, from Rπu(z) ≥ Rπu(ω′) =⇒πω′(z) ≥ πω′(ω

′) for every z ∈ L+, one deduces, as

9A simple proof of the existence of Lagrange multipliers for a convex programming problem can be found in
Barbu and Precupanu [18, Chapter 3, Theorem 1.1]. See also [20] and [1, Chapter 5, Theorem 5.77].
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previously, the existence of two real numbers µ1 ≥ 0 and µ2 ≥ 0 not all equal to zero such that
µ1[πω′ ·z−πω′ ·ω′] ≥ µ2[Rπu(z)−Rπu(ω′)] for every z ∈ L+. As previously, fromRπu(ω) = πω′ ·ω >
0, one deduces (µ1, µ2) À 0, so that for some µ > 0, µπω′ · ω′ = Rπu(ω′) and µπω′ · z ≥ Rπu(z)
for every z ∈ L+, which proves the claim.

Fix now (x, y) ∈ ∏i∈I Pu
i (xi)×

∏
j∈J Y u

j . Let ω′0 = ω −∑i∈I z′i0 +
∑
j∈J z′j0

where for each i,

z′i0 ∈ Zi(xi) ∩ Lu, z′i0 ≤ {0, xi, ωi , xi}, and for each j, z′j0
∈ Zj(yj) ∩ Lu, z′j0

≥ {yj , 0, yj}. Once

again, this is possible in view of the definition of Lu and our assumptions on Zi(xi) and Zj(yj).
For every ω′ ≥ ω′ in Ω, applying Theorem 2.3 and using (1) and (2) of Proposition 4.1, we get:

xi ∈ Pu
i (xi) =⇒πω′ · (xi − z′i) ≥ πω′ · (xi − z′i) =⇒πω′ · xi ≥ πω′ · xi(4.5)

and for each i, πui (xi − z′i) = πω′ · (xi − z′i),

yj ∈ Y u
j =⇒πω′ · (z′j − yj) ≥ πω′ · (z′j − yj) =⇒πω′ · yj ≤ πω′ · yj(4.6)

and for each j, πuj (z′j − yj) = πω′ · (z′j − yj).

Let V be the τ -neighborhood of 0 referred to in Assumption A3. We can assume that V is
convex and circled. From (4.2), we deduce that πω′ · V ≤ πω′ · ω = 1, thus that each πω′ belongs
to V 0, the polar set of V in L′. Since L is locally convex, it follows from Alaoglu–Bourbaki’s
theorem that V 0 is τ -equicontinuous, thus σ(L′, L)-compact. Passing to a subnet if necessary, we
can assume that πω′

σ(L′,L)−−−−→πu ∈ L′ such that πu ·ω = 1. Passing to limit in the relations (4.5), (4.6)
and (4.4), we get πu · xi ≥ πuxi, πu · yj ≤ πuyj , and for each i, πu · xi = πu · ωi +

∑
j∈J θijπu · yj ,

which completes the proof that (x, y, πu) is a quasi-equilibrium of Eu.

To go further, we now consider the family U of all u > 0 in L such that the order interval [−u, u]
contains xi, ωi, yj for all i ∈ I and j ∈ J and notice that U is a directed set. We will apply the
previous result to the economies Eu defined as above and will pass to limit.

The next proposition is the main result of this paper.

Proposition 4.3. Under A3, there exists a price system π ∈ L′ such that π · ω > 0 and (x, y, π)
is a quasi-equilibrium of E. This quasi-equilibrium is nontrivial if for some λ > 0, λω ∈ ω +∑
j∈J Yj −

∑
i∈I Xi.

Proof. For each u ∈ U , in view of the previous proposition and of its proof, let πu ∈ L′ such that

πu · ω′ ≤ πu · P̂ (ω′) and (x, y, πu) is a quasi-equilibrium of Eu. Let V be the convex and circled

τ -neighborhood of 0 such that ω′+ω +V ⊆ P̂ (ω′). As previously, πu ·V ≤ πu ·ω = 1, and passing
to a subnet if necessary, we can assume that πu

σ(L′,L)−−−−→π ∈ L′ such that π · ω = 1.
We now claim that π supports the allocation (x, y). To see that, fix now (x, y) ∈∏i∈I Pi(xi)×∏
j∈J Yj . By construction of U , all xi, yj belong to some Lu0 for u0 ∈ U and consequently to any

Lu ⊃ Lu0 . Passing to limit in the relations πu · xi ≥ πuxi and πu · yj ≤ πuyj , we get π · xi ≥ πxi
and π · yj ≤ πyj .

Passing to limit in the relations πu · xi = πu · ωi +
∑
j∈J θijπu · yj , we get that for each i,

π · xi = π · ωi +
∑
j∈J θijπ · yj , proving that (x, y, π) is a quasi-equilibrium of E .

Finally, assume that for some λ > 0, λω ∈ ω +
∑
j∈J Yj −

∑
i∈I Xi. From π · ω = 1, we deduce

that there exist x ∈ ∏i∈I Xi, y ∈ ∏j∈J Yj such that π · (ω +
∑
j∈J yj −

∑
i∈I xi) > 0. We then
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have for some i0,

π · xi0 < π · ωi0 +
∑

j∈J
θi0jπ · yj ≤ π · ωi0 +

∑

j∈J
θi0jπ · yj = π · xiO ,

which proves that the quasi-equilibrium is nontrivial.

Remark 4.7. The condition for nontriviality is in particular satisfied if inaction is possible as well
for consumers (0 ∈ Xi) as for producers (0 ∈ Yj).

Recalling that preferences are non-ordered and that we do not assume any monotonicity property
of preferences or free-disposal in production, a consequence of the last proposition is the following
theorem which extends any previous equilibrium existence result obtained in the Mas-Colell or
Mas-Colell–Richard settings:

Theorem 4.8. Assume A1, A2, A3 on the commodity space. Then an ω-proper and compact
production economy in which inaction is possible as well for consumers as for producers has a
nontrivial quasi-equilibrium.

Remark 4.9. As usual, an irreducibility condition on the economy guarantees that the nontrivial
equilibrium is actually an equilibrium. A very simple condition, inspired by Arrow–Hahn [16], is
the following:

IR: For any non-trivial partition {I1, I2} of the set I of consumers and for any feasible con-
sumption allocation x, there exist x′ ∈∏i∈I Xi such that
• x′i ∈ Pi(xi) ∀i ∈ I1;
• ∑i∈I x′i ∈ ω′ +

∑
j∈J Yj with, for some λ > 0, (ω′ − ω) ≤ λ

∑
i∈I2 ωi .

In the next section, we show with examples that this paper is more than a unified proof for old
results and allows to obtain the existence of equilibrium in settings of economic interest which are
covered by no previous equilibrium existence result.

5. Examples

There is a class of examples of commodity spaces which satisfy Assumptions A1 and A2 and
are not vector lattices. We concentrate here on a few examples of commodity spaces that satisfy
also Assumption A3.

Example 5.1. Consider the vector space

L =
{
f ∈ C[0, 2] : f(1) = 1

2 [f(0) + f(2)]
}

.

Clearly, L is a closed vector subspace of the Banach lattice C[0, 2], where C[0, 2] is equipped with
the sup norm ‖f‖∞ = supx∈[0,2] |f(x)|. The ordered vector space has the following properties.

1. L has order units; for instance constant function 1 ∈ L is an order unit.
2. The positive cone L+ is closed, generating, with a non-empty interior.
3. L is not a vector lattice.
4. L satisfies the Riesz Decomposition Property.10

5. The order intervals are norm bounded.

10This was shown by I. Namioka [31, p. 45]; see also [32, Example 1.7, p. 14].
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In particular, it should be clear from the above properties that assumptions A1 and A2 are
satisfied.

Moreover, in this case the Decomposition Property guarantees that the Riesz–Kantorovich func-
tionals are additive and their linear extensions are continuous (since the closed unit ball of L is
the order interval [−1,1]). As in Remark 4.6, it is easily deduced that for any ω > 0 and every
m-tuple (f1, . . . , fm) of continuous linear functionals satisfying fi(ω) > 0 its Riesz–Kantorovich
functional is uniformly ω-proper on L+.

Example 5.2. Let L = Ck[0, 1], the vector space of all real-valued functions on [0, 1] which are k
times continuously differentiable. With the pointwise ordering and the sup norm, L is an ordered
topological vector space such that:

1. L is not a vector lattice.
2. L has order units; for instance 1 ∈ L (and hence the positive cone L+ is generating).
3. The positive cone is norm closed.
4. The order intervals are norm bounded.
5. L satisfies the Riesz Decomposition Property. 11

6. L′ is a vector lattice and its lattice operations are given by the Riesz–Kantorovich formulas.

We indicate here how to prove (6) without using (5). One thus has to prove separately the two
claims contained in Assertion (6). Actually, both can be deduced from the fact that every positive
linear functional on L has a unique extension to a positive linear functional on all of C[0, 1]. It
follows from this that the norm dual of L is order isomorphic to the norm dual of C[0, 1] and thus,
since L∼ = ca[0, 1] is a Riesz space, L′ is likewise a Riesz space. Using the same extension property
and the norm density of L in C[0, 1], it is easily proved that the lattice operations of L′ satisfy the
Riesz–Kantorovich formula.

Clearly, Assumptions A1 and A2 are satisfied. Once more, since the Riesz–Kantorovich func-
tionals are additive, A3 follows from similar arguments to the ones used in Remark 4.6.

Remark 5.3. In the two examples above, the ω-uniform properness of the Riesz Kantorovich
functional is implied by the facts that L′ is a vector lattice and its lattice operations are given by
the Riesz–Kantorovich formulas. One could wonder whether these conditions are equivalent to the
ω-uniform properness condition. The following example shows that the answer is not.

Example 5.4. Let L = R` be ordered by a closed convex pointed and generating cone K. It
follows that K has a non-empty interior and that the order intervals of L are compact. In this
case, it is well-known that K has the decomposition property if and only if K has exactly ` extremal
rays, i.e., if and only if K is a lattice cone.

Now fix ω > 0 (i.e., ω 6= 0 and ω ∈ K) and pick m linear functionals (f1, . . . , fm) such that
fi(ω) > 0 for each i. If ω is in the interior of L+ = K, then it is easily seen that Rf is ω-uniformly
proper on L+.12 However, generically on the finite list of linear functionals, their Riesz–Kantorovich
is not additive.

This case is not of real interest for equilibrium existence since when ω is in the interior of the
positive cone then the equilibrium of an ω-proper economy can be proved using classical theorems.

11This is asserted by several authors (see for instance [24, p. 9] and [25, pp. 18–20]). For the case k = 1, one

can find a proof in unpublished lecture notes of C.D. Aliprantis.
12Indeed, Let V be a τ -neighborhood of 0 such that ω+V ⊆ K and fi(ω+V ) > 0 for each i. ThenRf (ω+V ) > 0,

thus Rf (ω′ + ω + V ) ≥ Rf (ω′) +Rf (ω + V ) > Rf (ω′).



           

16

When ω is on the boundary of the positive cone, equilibrium may not exist (see an example
in [11]) and the Riesz–Kantorovich functionals may not be ω-proper. An interesting case is the
case where L+ = K is a polyhedral convex cone (with more than ` extremal rays) and ω does
not belong to the interior of K. It should be noted that for any finite list of continuous linear
functionals (fk)

K
k=1 such that fk(ω) > 0 for each k, Rf is ω-proper at ω. However, we do not know

at this time if these functionals are uniformly proper at any point ω′ ≥ ω.
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