Econ 2042010
 Lecture 1

Outline

1. Introductions
2. About the Course and Other Administrative Details
3. Methods of Proof
4. Equivalence Relations
5. Cardinality

Introductions

Welcome

- 204
- Berkeley Economics
- UC Berkeley
- Berkeley
- California
- US...

Introductions

- Chris Shannon
- Ivan Balbuzanov
- Oleksa Shvets

About the Course

- Schedule: Lectures MTWThF 9:00-11:00 here (180 Tan), often going over so don't schedule anything before 11:30

Sections: MTWThF $1-2: 30$ and $2: 30-4: 00$, in 608-7 Evans (please try to split up evenly)

Office hours: Chris Shannon MTWThF 11:00-12:00 here or 511 Evans, also by appt.

Oleksa + Ivan MTWThF 3:00-5:00 608-1 Evans (switching off days)

- Final Exam: Wednesday August 18, 9:00 am - 12:00 pm, 180 Tan Hall
- Prerequisites: Math 53-54 at Berkeley or equivalent
- 4 semesters college mathematics
- linear algebra
- multivariable calculus
- rigorous approach - theorems stated carefully and some proofs given
- stream for engineers and scientists

Course requirements:

- problems sets: 6 total
(no late problem sets...no exceptions)
- exam
- reading/working on your own

Grade: 20% problem sets (5 highest scores out of 6), 80% final exam

Grading in First Year Economics Courses:

- median grade $=B+$: solid command of material
- A and A- are very good grades, A+ for truly exceptional work
- B : ready to go on to further work...a B in 204 means you are ready to go on to 201a/b, 202a/b, 240a/b
- B- : very marginal, but we won't make you take the class again. B- in 204 means you will have a very hard time in 201a/b. Recommend you take Math 53 and 54 this year, maybe Math 104, come back next year to retake 204 and
take 201a/b. B- is a passing grade, but you must maintain a B average
- C: not passing. Definitely not ready for 201a/b, 202a/b, 240a/b. Take Math 53-54 this year, maybe Math 104, retake 204 next year
- 204 with at least a B- (or a waiver from 204 requirement) is a strictly enforced prerequisite for enrollment in 201a/b
- F: means you didn't take the final exam. Be sure to withdraw if you don't or can't take the final.

Resources:

Book: de la Fuente, Mathematical Methods and Models for Economists

Lecture notes: for every lecture + supplements for several topics

Be sure to read Corrections Handout with dIF

Seek out other references

This class is not normal...

- lectures
- expectations
- classroom stuff

Goals for 204

- reduce heterogeneity of math backgrounds for students in Econ graduate classes
- advance everyone's math skills and knowledge
- present some particular concepts and results used in first-year economics courses 201a/b, 202a/b, 240a/b
- challenge everyone - so not everyone will understand everything
- develop basic math skills and knowledge needed to work as a professional economist and read academic economics
- develop ability to read and evaluate purported proofs...essential for reading and working in all branches of economics - theoretical, empirical, experimental
- develop ability to compose simple proofs...essential to working in all branches of economics - theoretical, empirical, experimental
- cover selected material from real analysis and linear algebra at moderate level of abstraction (considerably more advanced and abstract than Math $53+54$)
- not to review Math $53+54$. If you are weak on this material, take Math 53-54 this year, and take 204 next year.

Learning by Doing

- to learn this sort of mathematics you need to do more than just read the book and notes and listen to lectures
- active reading: work through each line, be sure you know how to get from one line to the next
- active listening: follow each step as we work through arguments in class
- working problems: the most valuable part of the class
- working in groups strongly encouraged...
- but, always try to work through all of the problems before talking to others
- everyone must write up his/her own solutions
- best test of understanding: can you explain it to others

Methods of Proof

What is a proof? The million dollar question...
Main Methods of Proof:

- deduction
- contraposition
- induction
- contradiction

We'll examine each of these in turn.

Proof by Deduction

Proof by Deduction: A list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or
- a previously established theorem; or
- follows from previous statements in the list by a valid rule of inference

Proof by Deduction

Example: Prove that the function $f(x)=x^{2}$ is continuous at $x=5$.

Recall from one-variable calculus that $f(x)=x^{2}$ is continuous at $x=5$ means

That is, "for every $\varepsilon>0$ there exists a $\delta>0$ such that whenever x is within δ of $5, f(x)$ is within ε of $f(5)$."

To prove the claim, we must systematically verify that this definition is satisfied.

Proof. Let $\varepsilon>0$ be given. Let

$$
\delta=\min \left\{1, \frac{\varepsilon}{11}\right\}>0
$$

Where did that come from ? Suppose $|x-5|<\delta$. Since $\delta \leq 1$, $4<x<6$, so $9<x+5<11$ and $|x+5|<11$. Then

$$
\begin{aligned}
|f(x)-f(5)| & =\left|x^{2}-25\right| \\
& =|(x+5)(x-5)| \\
& =|x+5||x-5| \\
& <11 \cdot \frac{\delta}{\sigma} \leq \\
& \leq 11 \cdot \frac{\varepsilon}{11} \leq \\
& =\varepsilon
\end{aligned}
$$

Thus, we have shown that for every $\varepsilon>0$, there exists $\delta>0$ such that $|x-5|<\delta \Rightarrow|f(x)-f(5)|<\varepsilon$, so f is continuous at $x=5$.

Proof by Contraposition

not Recall some basics of logic.

$\neg P$ means " P is false."
and $P \wedge Q$ means " P is true and Q is true."
$P \boxtimes Q$ means " P is true or Q is true (or possibly both)."
$\neg P \wedge Q$ means $(\neg P) \wedge Q ; \neg P \vee Q$ means $(\neg P) \vee Q$.
$P \Leftrightarrow Q$ means "whenever P is satisfied, Q is also satisfied."
Formally, $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$.

Proof by Contraposition

The contrapositive of the statement $P \Rightarrow Q$ is the statement $\neg Q \Rightarrow \neg P$.

Theorem 1. $P \Rightarrow Q$ is true if and only if $\neg Q \Rightarrow \neg P$ is true.

Proof. Suppose $P \Rightarrow Q$ is true. Then either P is false, or Q is true (or possibly both). Therefore, either $\neg P$ is true, or $\neg Q$ is false (or possibly both), so $\neg(\neg Q) \vee(\neg P)$ is true, that is, $\neg Q \Rightarrow \neg P$ is true.

Conversely, suppose $\neg Q \Rightarrow \neg P$ is true. Then either $\neg Q$ is false, or $\neg P$ is true (or possibly both), so either Q is true, or P is false (or possibly both), so $\neg P \vee Q$ is true, so $P \Rightarrow Q$ is true.

We illustrate with an example:
Theorem 2. For every $n \in \mathbf{N}_{0}=\{0,1,2,3, \ldots\}$,

Proof. Base step $n=0$: LBS $=\sum_{k=1}^{0} k=$ the empty sum $=$ 0. $\mathrm{RHS}=\frac{0 \cdot 1}{2}=0$

So the claim is true for $n=0$.

Induction step: Suppose

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \text { for some } n>0
$$

We must show that

$$
\sum_{k=1}^{n+1} k=\frac{(n+1)((n+1)+1)}{2}
$$

$$
\begin{aligned}
\mathrm{LHS} & =\sum_{k=1}^{n+1} k \\
& =\frac{\sum_{k=1}^{n} k+(n+1)}{2}+(n+1) \text { by the Induction hypothesis } \\
& =\frac{(n+1)\left(\frac{n}{2}+1\right)}{2}=\frac{(n+1)(n+2)}{2} \\
& =\frac{(n+1)((n+1)+1)}{2} \\
\mathrm{RHS} & =\frac{(n+1)(n+2)}{2}=\mathrm{LHS}
\end{aligned}
$$

So by mathematical induction, $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for all $n \in \mathbf{N}_{0}$.

Proof by Contradiction

Assume the negation of what is claimed, and work toward a contradiction.

Theorem 3. There is no rational number q such that $q^{2}=2$.
rational numbers
Proof. Suppose $q^{2}=2$ where $q \in \mathbf{Q}$. Then we can write $q=\frac{m}{n}$ for some integers $m, n \in \mathbf{Z}$. Moreover, we can assume that m and n have no common factor; if they did, we could divide it out.

$$
2=q^{2}=\frac{m^{2}}{n^{2}}
$$

Therefore, $m^{2}=2 n^{2}$, so m^{2} is even.

We claim that m is even. If not, then m is odd, so $m=2 p+1$ for some $p \in \mathbf{Z}$. Then

$$
\begin{aligned}
m^{2} & =(2 p+1)^{2} \\
& =4 p^{2}+4 p+1 \\
& =2\left(2 p^{2}+2 p\right)+1
\end{aligned}
$$

which is odd, contradiction. Therefore, m is even, so $m=2 r$ for some $r \in \mathbf{Z}$.

$$
\begin{aligned}
4 r^{2} & =(2 r)^{2} \\
& =m^{2} \\
& =2 n^{2} \\
n^{2} & =2 r^{2}
\end{aligned}
$$

So n^{2} is even, which implies (by the argument given above) that n is even. Therefore, $n=2 s$ for some $s \in \mathbf{Z}$, so m and n have a
common factor, namely 2, contradiction. Therefore, there is no rational number q such that $q^{2}=2$.

Equivalence Relations

Definition 1. A binary relation R from X to Y is a subset $R \subseteq$ $X \times Y$. We write $x R y$ if $(x, y) \in R$ and "not $x R y$ " if $(x, y) \notin R$. $R \subseteq X \times X$ is a binary relation on X.

Example: Suppose $f: X \rightarrow Y$ is a function from X to Y. The binary relation $R \subseteq X \times Y$ defined by

$$
x R y \Longleftrightarrow f(x)=y
$$

is exactly the graph of the function f. A function can be considered a binary relation R from X to Y such that for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in R$.

Example: Suppose $X=\{1,2,3\}$ and R is the binary relation on X given by $R=\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$. This is the binary relation "is weakly greater than," or \geq.

Equivalence Relations

Definition 2. A binary relation R on X is
(i) reflexive if $\forall x \in X, x R x$
(ii) symmetric if $\forall x, y \in X, x R y \Leftrightarrow y R x$
(iii) transitive if $\forall x, y, z \in X,(x R y \wedge y R z) \Rightarrow x R z$

Definition 3. A binary relation R on X is an equivalence relation if it is reflexive, symmetric and transitive.

Equivalence Relations

Definition 4. Given an equivalence relation R on X, write

$$
[x]=\{y \in X: x R y\}
$$

$[x]$ is called the equivalence class containing x.
The set of equivalence classes is the quotient of X with respect to R, denoted X / R.

Example: The binary relation \geq on \mathbf{B} is not an equivalence relation because it is not symmetric.

Example: Let $X=\{a, b, c, d\}$ and

$$
R=\{(a, a),(a, b),(b, a),(b, b),(c, c),(c, d),(d, c),(d, d)\}
$$

R is an equivalence relation (why?) and the equivalence classes of R are $\{a, b\}$ and $\{c, d\} . X / R=\{\{a, b\},\{c, d\}\}$

Equivalence Relations

The equivalence classes of an equivalence relation form a partition of X : every element of X belongs to exactly one equivalence class.

Theorem 4. Let R be an equivalence relation on X. Then $\forall x \in$ $X, x \in[x]$. Given $x, y \in X$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$.

Proof. If $x \in X$, then $x R x$ because R is reflexive, so $x \in[x]$.

Suppose $x, y \in X$. If $[x] \cap[y]=\emptyset$, we're done. So suppose $[x] \cap[y] \neq \emptyset$. We must show that $[x]=[y]$, i.e. that the elements of $[x]$ are exactly the same as the elements of [y].

Choose $z \in[x] \cap[y]$. Then $z \in[x]$, so $x R z$. By symmetry, $z R x$. Also $z \in[y]$, so $y R z$. By symmetry again, $z R y$. Now choose $w \in[x]$. By definition, $x R w$. Since $z R x$ and R is transitive, $z R w$. By symmetry, $w R z$. Since $z R y, w R y$ by transitivity again. By symmetry, $y R w$, so $w \in[y]$, which shows that $[x] \subseteq[y]$. Similarly, $[y] \subseteq[x]$, so $[x]=[y]$. \square

Cardinality

Definition 5. Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f: A \rightarrow B$, that is, a function $f: A \rightarrow B$ that is 1-1 $\left(a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)\right)$, and onto $(\forall b \in B \exists a \in A$ s.t. $f(a)=b)$.

Example: $A=\{2,4,6, \ldots, 50\}$ is numerically equivalent to the set $\{1,2, \ldots, 25\}$ under the function $f(n)=2 n$.
$B=\{1,4,9,16,25,36,49 \ldots\}=\left\{n^{2}: n \in \mathbf{N}\right\}$ is numerically equivalent to N .

Cardinality

A set is either finite or infinite. A set is finite if it is numerically equivalent to $\{1, \ldots, n\}$ for some n. A set that is not finite is infinite.

In particular, $A=\{2,4,6, \ldots, 50\}$ is finite, $B=\{1,4,9,16,25,36,49 \ldots\}$ is infinite.

A set is countable if it is numerically equivalent to the set of natural numbers $\mathbf{N}=\{1,2,3, \ldots\}$. A set that is not countable is called uncountable.

Cardinality

Example: The set of integers \mathbf{Z} is countable.

$$
\mathrm{Z}=\{0,1,-1,2,-2, \ldots\}
$$

Define $f: \mathbf{N} \rightarrow \mathbf{Z}$ by

$$
\begin{aligned}
f(1) & =0 \\
f(2) & =1 \\
f(3) & =-1 \\
& \vdots \\
f(n) & =(-1)^{n}\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

where $\lfloor x\rfloor$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.

Cardinality

Theorem 5. The set of rational numbers Q is countable.
"Picture Proof":

$$
\begin{aligned}
\mathbf{Q} & =\left\{\frac{m}{n}: m, n \in \mathbf{Z}, n \neq 0\right\} \\
& =\left\{\frac{m}{n}: m \in \mathbf{Z}, n \in \mathbf{N}\right\}
\end{aligned}
$$

$$
f(3)
$$

Go back and forth on upward-sloping diagonals, omitting the
repeats:

$$
\begin{aligned}
f(1) & =0 \\
f(2) & =1 \\
f(3) & =\frac{1}{2} \\
f(4) & =-1
\end{aligned}
$$

$f: \mathbf{N} \rightarrow \mathbf{Q}, f$ is one-to-one and onto.

