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Lecture 5

Outline

1. Properties of Real Functions (Sect. 2.6, cont.)

2. Monotonic Functions

3. Cauchy Sequences and Complete Metric Spaces

4. Contraction Mappings

5. Contraction Mapping Theorem
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Properties of Real Functions

Here we first study properties of functions from R to R, making

use of the additional structure we have in R as opposed to general

metric spaces.

Let f : X → R where X ⊆ R. We say f is bounded above if

f(X) = {r ∈ R : f(x) = r for some x ∈ X}
is bounded above. Similarly, we say f is bounded below if f(X)

is bounded below. Finally, f is bounded if f is both bounded

above and bounded below, that is, if f(X) is a bounded set.
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Extreme Value Theorem

Theorem 1 (Thm. 6.23, Extreme Value Theorem). Let a, b ∈ R

with a ≤ b and let f : [a, b] → R be a continuous function. Then

f assumes its minimum and maximum on [a, b]. That is, if

M = sup
t∈[a,b]

f(t) m = inf
t∈[a,b]

f(t)

then ∃tM , tm ∈ [a, b] such that f(tM) = M and f(tm) = m.

Proof. Let

M = sup{f(t) : t ∈ [a, b]}
If M is finite, then for each n, we may choose tn ∈ [a, b] such

that M ≥ f(tn) ≥ M − 1
n (if we couldn’t make such a choice,

then M − 1
n would be an upper bound and M would not be the
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supremum). If M is infinite, choose tn such that f(tn) ≥ n. By

the Bolzano-Weierstrass Theorem, {tn} contains a convergent

subsequence {tnk}, with

lim
k→∞

tnk = t0 ∈ [a, b]

Since f is continuous,

f(t0) = lim
t→t0

f(t)

= lim
k→∞

f
(

tnk

)

= M

so M is finite and

f(t0) = M = sup{f(t) : t ∈ [a, b]}
so f attains its maximum and is bounded above.

The argument for the minimum is similar.



Intemediate Value Theorem Redux

Theorem 2 (Thm. 6.24, Intermediate Value Theorem). Sup-

pose f : [a, b] → R is continuous, and f(a) < d < f(b). Then

there exists c ∈ (a, b) such that f(c) = d.

Proof. Let

B = {t ∈ [a, b] : f(t) < d}
a ∈ B, so B 6= ∅. By the Supremum Property, supB exists and

is real so let c = supB. Since a ∈ B, c ≥ a. B ⊆ [a, b], so c ≤ b.

Therefore, c ∈ [a, b]. We claim that f(c) = d.

Let

tn = min

{

c +
1

n
, b

}

≥ c
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Either tn > c, in which case tn 6∈ B, or tn = c, in which case

tn = b so f(tn) > d, so again tn 6∈ B; in either case, f(tn) ≥ d.

Since f is continuous at c, f(c) = limn→∞ f(tn) ≥ d (Theorem

3.5 in de la Fuente).

Since c = supB, we may find sn ∈ B such that

c ≥ sn ≥ c − 1

n

Since sn ∈ B, f(sn) < d. Since f is continuous at c, f(c) =

limn→∞ f(sn) ≤ d (Theorem 3.5 in de la Fuente).

Since d ≤ f(c) ≤ d, f(c) = d. Since f(a) < d and f(b) > d,

a 6= c 6= b, so c ∈ (a, b).



Monotonic Functions

Definition 1. A function f : R → R is monotonically increasing

if

y > x ⇒ f(y) ≥ f(x)

Monotonic functions are very well-behaved...
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Monotonic Functions

Theorem 3 (Thm. 6.27). Let a, b ∈ R with a < b, and let

f : (a, b) → R be monotonically increasing. Then the one-sided

limits

f(t+) = lim
u→t+

f(u)

f(t−) = lim
u→t−

f(u)

exist and are real numbers for all t ∈ (a, b).

Proof. This is analogous to the proof that a bounded monotone

sequence converges.
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Monotonic Functions

We say that f has a simple jump discontinuity at t if the one-

sided limits f(t−) and f(t+) both exist but f is not continuous

at t.

Note that there are two ways f can have a simple jump discon-

tinuity at t: either f(t+) 6= f(t−), or f(t+) = f(t−) 6= f(t).

The previous theorem says that monotonic functions have only

simple jump discontinuities. Note that monotonicity also im-

plies that f(t−) ≤ f(t) ≤ f(t+). So a monotonic function has a

discontinuity at t if and only if f(t+) 6= f(t−).
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Monotonic Functions

A monotonic function is continuous “almost everywhere” – ex-

cept for at most countably many points.

Theorem 4 (Thm. 6.28). Let a, b ∈ R with a < b, and let

f : (a, b) → R be monotonically increasing. Then

D = {t ∈ (a, b) : f is discontinuous at t}
is finite (possibly empty) or countable.

Proof. If t ∈ D, then f(t−) < f(t+) (if the left- and right-hand

limits agreed, then by monotonicity they would have to equal

f(t), so f would be continuous at t). Q is dense in R, that is, if
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x, y ∈ R and x < y then ∃r ∈ Q such that x < r < y. So for every

t ∈ D we may choose r(t) ∈ Q such that

f(t−) < r(t) < f(t+)

This defines a function r : D → Q. Notice that

s > t ⇒ f(s−) ≥ f(t+)

so

s > t, s, t ∈ D ⇒ r(s) > f(s−) ≥ f(t+) > r(t)

so r(s) 6= r(t). Therefore, r is one-to-one, so it is a bijection

from D to a subset of Q. Thus D is finite or countable.
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Cauchy Sequences and Complete Metric
Spaces

Roughly, a metric space is complete if “every sequence that

ought to converge to a limit has a limit to converge to.”

Recall that xn → x means

∀ε > 0 ∃N(ε/2) s.t. n > N(ε/2) ⇒ d(xn, x) <
ε

2

Observe that if n, m > N(ε/2), then

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε
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Cauchy Sequences and Complete Metric
Spaces

This motivates the following definition:

Definition 2. A sequence {xn} in a metric space (X, d) is Cauchy

if

∀ε > 0 ∃N(ε) s.t. n, m > N(ε) ⇒ d(xn, xm) < ε

A Cauchy sequence is trying really hard to converge, but there

may not be anything for it to converge to.
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Cauchy Sequences and Complete Metric
Spaces

Any sequence that does converge must be Cauchy:

Theorem 5 (Thm. 7.2). Every convergent sequence in a metric

space is Cauchy.

Proof. We just did it: Let xn → x. For every ε > 0 ∃N such that

n > N ⇒ d(xn, x) < ε/2. Then

m,n > N ⇒ d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε
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Example: Let X = (0,1] and d be the Euclidean metric. Let

xn = 1
n. Then xn → 0 in E1, so {xn} is Cauchy in E1. Thus {xn}

is Cauchy in (X, d). But {xn} does not converge in (X, d).

The Cauchy property depends only on the sequence and the

metric d, not on the ambient metric space:

{xn} is Cauchy in (X, d), but {xn} does not converge in (X, d)

because the point it is trying to converge to (0) is not an element

of X.
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Complete Metric Spaces and Banach Spaces

Where does every Cauchy sequence get what it wants?

Definition 3. A metric space (X, d) is complete if every Cauchy

sequence {xn} ⊆ X converges to a limit x ∈ X.

Definition 4.A Banach space is a normed space that is complete

in the metric generated by its norm.
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Complete Metric Spaces and Banach Spaces

Example: Consider the earlier example of X = (0,1] with d

the usual Euclidean metric. The sequence {xn} with xn = 1
n is

Cauchy but does not converge, so ((0,1], d) is not complete.

Example: Q is not complete in the Euclidean metric. To see

this, let

xn =
b10n

√
2c

10n

where byc is the greatest integer less than or equal to y; xn is just

equal to the decimal expansion of
√

2 to n digits past the decimal

point. Clearly, xn is rational. |xn −
√

2| ≤ 10−n, so xn →
√

2 in

E1, so {xn} is Cauchy in E1, hence Cauchy in Q; since
√

2 6∈ Q,

{xn} is not convergent in Q, so Q is not complete.
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Complete Metric Spaces and Banach Spaces
Theorem 6 (Thm. 7.10). R is complete with the usual metric
(so E1 is a Banach space).

Proof. Suppose {xn} is a Cauchy sequence in R. Fix ε > 0. Find
N(ε/2) such that

n, m > N(ε/2) ⇒ |xn − xm| <
ε

2
Let

αn = sup{xk : k ≥ n}
βn = inf{xk : k ≥ n}

Fix m > N(ε/2). Then

k ≥ m ⇒ k > N(ε/2) ⇒ xk < xm +
ε

2

⇒ αm = sup{xk : k ≥ m} ≤ xm +
ε

2
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Since αm < ∞,

lim supxn = lim
n→∞ αn ≤ αm ≤ xm +

ε

2

since the sequence {αn} is decreasing. Similarly,

lim inf xn ≥ xm − ε

2

Therefore,

0 ≤ lim sup
n→∞

xn − lim inf
n→∞ xn ≤ ε

Since ε is arbitrary,

lim sup
n→∞

xn = lim inf
n→∞ xn ∈ R

Thus limn→∞ xn exists and is real, so {xn} is convergent.
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Complete Metric Spaces and Banach Spaces

Theorem 7 (Thm. 7.11). En is complete for every n ∈ N.

Proof. See de la Fuente.
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Complete Metric Spaces and Banach Spaces
Theorem 8 (Thm. 7.9). Suppose (X, d) is a complete metric

space and Y ⊆ X. Then (Y, d) = (Y, d|Y ) is complete if and only

if Y is a closed subset of X.

Proof. Suppose (Y, d) is complete. We need to show that Y is

closed. Consider a sequence {yn} ⊆ Y such that yn →(X,d) x ∈
X. Then {yn} is Cauchy in X, hence Cauchy in Y ; since Y is

complete, yn →(Y,d) y for some y ∈ Y . Therefore, yn →(X,d) y.
By uniqueness of limits, y = x, so x ∈ Y . Thus Y is closed.

Conversely, suppose Y is closed. We need to show that Y is

complete. Let {yn} be a Cauchy sequence in Y . Then {yn} is

Cauchy in X, hence convergent, so yn →(X,d) x for some x ∈
X. Since Y is closed, x ∈ Y , so yn →(Y,d) x ∈ Y . Thus Y is

complete.

18
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Complete Metric Spaces and Banach Spaces

Theorem 9 (Thm. 7.12). Given X ⊆ Rn, let C(X) be the set

of bounded continuous functions from X to R with

‖f‖∞ = sup{|f(x)| : x ∈ X}
Then C(X) is a Banach space.
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Contractions

Definition 5. Let (X, d) be a nonempty complete metric space.

An operator is a function T : X → X.

An operator T is a contraction of modulus β if β < 1 and

d(T(x), T(y)) ≤ βd(x, y) ∀x, y ∈ X

A contraction shrinks distances by a uniform factor β < 1.

20

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com



�

�

� � � �

�

� � � � � � � �

�

� � � � �

�

21

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com



Contractions

Theorem 10. Every contraction is uniformly continuous.

Proof. Fix ε > 0. Let δ = ε
β. Then ∀x, y such that d(x, y) < δ,

d(T(x), T(y)) ≤ βd(x, y) < βδ = ε

Note that a contraction is Lipschitz continuous with Lipschitz

constant β < 1 (and hence also uniformly continuous).
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Contractions and Fixed Points

Definition 6. A fixed point of an operator T is point x∗ ∈
X such that T(x∗) = x∗.
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Contraction Mapping Theorem

Theorem 11 (Thm. 7.16, Contraction Mapping Theorem). Let

(X, d) be a nonempty complete metric space and T : X → X a

contraction with modulus β < 1. Then

1. T has a unique fixed point x∗.

2. For every x0 ∈ X, the sequence {xn} where

x1 = T(x0), x2 = T(x1) = T(T(x0)), ...., xn = T(xn−1) for each n

converges to x∗.
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Note that the theorem asserts both the existence and uniqueness

of the fixed point, as well as giving an algorithm to find the fixed

point of a contraction.

Also note that the algorithm generates a sequence that con-

verges to the fixed point for any initial point x0.

Later in the course we will discuss more general fixed point the-

orems which, in contrast, only guarantee existence, and are not

constructive.
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Proof. Define the sequence {xn} as above by first fixing x0 ∈ X

and then letting xn = T(xn−1) = Tn(x0) for n = 1,2, . . ., where

Tn = T ◦ T ◦ . . . ◦ T is the n-fold iteration of T . We first show

that {xn} is Cauchy, and hence converges to a limit x. Then

d(xn+1, xn) = d(T(xn), T(xn−1))

≤ βd(xn, xn−1) = βd(T(xn−1), T(xn−2))

≤ β2d(xn−1, xn−2)
...

≤ βnd(x1, x0)

28
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Then for any n > m,

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (βn−1 + βn−2 + · · · + βm)d(x1, x0)

= d(x1, x0)
n−1
∑

`=m

β`

< d(x1, x0)
∞
∑

`=m

β`

=
βm

1 − β
d(x1, x0) (sum of a geometric series)

Fix ε > 0. Since βm

1−β → 0 as m → ∞, choose N(ε) such that for

any m > N(ε), βm

1−β < ε
d(x1,x0)

. Then for n, m > N(ε),

d(xn, xm) ≤ βm

1 − β
d(x1, x0) < ε
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Therefore, {xn} is Cauchy. Since (X, d) is complete, xn → x∗ for

some x∗ ∈ X.

Next, we show that x∗ is a fixed point of T .

T(x∗) = T
(

lim
n→∞xn

)

= lim
n→∞ T(xn) since T is continuous

= lim
n→∞ xn+1

= x∗

so x∗ is a fixed point of T .

Finally, we show that there is at most one fixed point. Suppose x∗

and y∗ are both fixed points of T , so T(x∗) = x∗ and T(y∗) = y∗.
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Then

d(x∗, y∗) = d(T(x∗), T(y∗))
≤ βd(x∗, y∗)

⇒ (1 − β)d(x∗, y∗) ≤ 0

⇒ d(x∗, y∗) ≤ 0

So d(x∗, y∗) = 0, which implies x∗ = y∗.



Continuous Dependence on Paramters

Theorem 12. (Thm. 7.18’, Continuous Dependence on

Parameters) Let (X, d) and (Ω, ρ) be two metric spaces and

T : X × Ω → X. For each ω ∈ Ω let Tω : X → X be defined by

Tω(x) = T(x, ω)

Suppose (X,d) is complete, T is continuous in ω, that is T(x, ·) :

Ω → X is continuous for each x ∈ X, and ∃β < 1 such that Tω

is a contraction of modulus β ∀ω ∈ Ω. Then the fixed point

function x∗ : Ω → X defined by

x∗(ω) = Tω(x∗(ω))

is continuous.

29
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Blackwell’s Sufficient Conditions

An important result due to Blackwell gives a set of sufficient

conditions for an operator to be a contraction that is particularly

useful in dynamic programming problems.

Let X be a set, and let B(X) be the set of all bounded functions

from X to R. Then (B(X), ‖ · ‖∞) is a normed vector space.

Notice that below we use shorthand notation that identifies a

constant function with its constant value in R, that is, we write

interchangeably a ∈ R and a : X → R to denote the function

such that a(x) = a ∀x ∈ X.
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Blackwell’s Sufficient Conditions

Theorem 13. (Blackwell’s Sufficient Conditions) Consider

B(X) with the sup norm ‖ · ‖∞. Let T : B(X) → B(X) be

an operator satisfying

1. (monotonicity) f(x) ≤ g(x) ∀x ∈ X ⇒ (Tf)(x) ≤ (Tg)(x) ∀x ∈
X

2. (discounting) ∃β ∈ (0,1) such that for every a ≥ 0 and x ∈ X,

(T(f + a)) (x) ≤ (Tf)(x) + βa

Then T is a contraction with modulus β.
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Proof. Fix f, g ∈ B(X). By the definition of the sup norm,

f(x) ≤ g(x) + ‖f − g‖∞ ∀x ∈ X

Then

(Tf)(x) ≤ (T(g + ‖f − g‖∞)) (x) ∀x ∈ X (monotonicity)

≤ (Tg)(x) + β‖f − g‖∞ ∀x ∈ X (discounting)

Thus

(Tf)(x) − (Tg)(x) ≤ β‖f − g‖∞ ∀x ∈ X

Reversing the roles of f and g above gives

(Tg)(x) − (Tf)(x) ≤ β‖f − g‖∞ ∀x ∈ X

Thus

‖T(f) − T(g)‖∞ ≤ β‖f − g‖∞
Thus T is a contraction with modulus β
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