
Economics 204 Summer/Fall 2010
Lecture 2–Tuesday July 27, 2010

Section 1.4. Cardinality (cont.)

Theorem 1 (Cantor) 2N, the set of all subsets of N, is not countable.

Proof: Suppose 2N is countable. Then there is a bijection f : N → 2N. Let Am = f(m).
We create an infinite matrix, whose (m, n)th entry is 1 if n ∈ Am, 0 otherwise:

N
1 2 3 4 5 · · ·

A1 = ∅ 0 0 0 0 0 · · ·

A2 = {1} 1 0 0 0 0 · · ·

2N A3 = {1, 2, 3} 1 1 1 0 0 · · ·

A4 = N 1 1 1 1 1 · · ·

A5 = 2N 0 1 0 1 0 · · ·
...

...
...

...
...

...
. . .

Now, on the main diagonal, change all the 0s to 1s and vice versa:

N
1 2 3 4 5 · · ·

A1 = ∅ 1 0 0 0 0 · · ·

A2 = {1} 1 1 0 0 0 · · ·

2N A3 = {1, 2, 3} 1 1 0 0 0 · · ·

A4 = N 1 1 1 0 1 · · ·

A5 = 2N 0 1 0 1 1 · · ·
...

...
...

...
...

...
. . .

The coding on the diagonal represents a subset of N which differs from each of the Am,
contradiction. It is important that we go along the diagonal. We need to define a set A ⊆ N
which is different from f(1), f(2), . . .. To define a set, we need to specify exactly what its
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elements are, and we do this by taking one entry from each column and one entry from each
row. The entry from column n tells us whether or not n is in the set, and the entry in row
m is used to ensure that A 6= Am.

More formally, let

tmn =

{

1 if n ∈ Am

0 if n 6∈ Am

Let A = {m ∈ N : tmm = 0}. (This is the set described by changing all the codings on the
diagonal.)

m ∈ A ⇔ tmm = 0

⇔ m 6∈ Am

1 ∈ A ⇔ 1 6∈ A1 so A 6= A1

2 ∈ A ⇔ 2 6∈ A2 so A 6= A2

...

m ∈ A ⇔ m 6∈ Am so A 6= Am

Therefore, A 6= f(m) for any m, so f is not onto, contradiction.

Remark: This result shows that there are fundamentally more subsets of N than elements
of N. One can show that 2N is numerically equivalent to R, so there are fundamentally
more real numbers than rational numbers.

Section 1.5: Algebraic Structures

Here we define abstract objects that have much of the algebraic structure of R, with
notions of addition, subtraction, multiplication and division.

Field Axioms

Definition 2 A field F = (F, +, ·) is a 3-tuple consisting of a set F and two binary opera-
tions +, · : F × F → F such that

1. Associativity of +:

∀α, β, γ ∈ F, (α + β) + γ = α + (β + γ)

2. Commutativity of +:
∀α, β ∈ F, α + β = β + α
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3. Existence of additive identity:1

∃!0 ∈ F s.t. ∀α ∈ F, α + 0 = 0 + α = α

4. Existence of additive inverse:2

∀α ∈ F ∃!(−α) ∈ F s.t. α + (−α) = (−α) + α = 0

We define α − β = α + (−β).

5. Associativity of · :
∀α, β, γ ∈ F, (α · β) · γ = α · (β · γ)

6. Commutativity of · :
∀α, β ∈ F, α · β = β · α

7. Existence of multiplicative identity:3

∃!1 ∈ F s.t. 1 6= 0 and ∀α ∈ F, α · 1 = 1 · α = α

8. Existence of multiplicative inverse:

∀α ∈ F s.t. α 6= 0 ∃!α−1 ∈ F s.t. α · α−1 = α−1 · α = 1

We define α
β

= αβ−1.

9. Distributivity of multiplication over addition:

∀α, β, γ ∈ F, α · (β + γ) = α · β + α · γ

Examples:

• R

• C = {x + iy : x, y ∈ R}. i2 = −1, so

(x + iy)(w + iz) = xw + ixz + iwy + i2yz = (xw − yz) + i(xz + wy)

• Q: Q ⊂ R, Q 6= R. Q is closed under +, ·, taking additive and multiplicative inverses;
the field axioms are inherited from the field axioms on R, so Q is a field.

• N is not a field: no additive identity.

1This says that the element 0 behaves like the real number zero; it need not be the real number zero.
Indeed, F need not be a subset of R.

2We write α + (−α) rather than α − α because subtraction has not yet been defined. In fact, we define
α − β to be α + (−β).

3This says that the element 1 behaves like the real number one; it need not be the real number one.
Again, F need not even be a subset of R.
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• Z is not a field; no multiplicative inverse for 2.

• Q(
√

2), the smallest field containing Q ∪ {
√

2}. Take Q, add
√

2, and close up under
+, ·, taking additive and multiplicative inverses. One can show

Q(
√

2) = {q + r
√

2 : q, r ∈ Q}

For example,
(

q + r
√

2
)

−1
=

q

q2 − 2r2
− r

q2 − 2r2

√
2

• A finite field: F2 = ({0, 1}, +, ·) where

0 + 0 = 0 0 · 0 = 0
0 + 1 = 1 + 0 = 1 0 · 1 = 1 · 0 = 0

1 + 1 = 0 1 · 1 = 1

(“Arithmetic mod 2”)

Vector Space Axioms

Here we define abstract objects that “behave like Rn”.

Definition 3 A vector space is a 4-tuple (V, F, +, ·) where V is a set of elements, called
vectors, F is a field, + is a binary operation on V called vector addition, and · : F ×V → V

is called scalar multiplication, satisfying

1. Associativity of +:
∀x, y, z ∈ V, (x + y) + z = x + (y + z)

2. Commutativity of +:
∀x, y ∈ V, x + y = y + x

3. Existence of vector additive identity:4

∃!0 ∈ V s.t. ∀x ∈ V, x + 0 = 0 + x = x

4. Existence of vector additive inverse:

∀x ∈ V ∃!(−x) ∈ V s.t. x + (−x) = (−x) + x = 0

We define x − y to be x + (−y).

5. Distributivity of scalar multiplication over vector addition:

∀α ∈ F, x, y ∈ V, α · (x + y) = α · x + α · y
4Note that 0 ∈ V and 0 ∈ F are different.
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6. Distributivity of scalar multiplication over scalar addition:

∀α, β ∈ F, x ∈ V (α + β) · x = α · x + β · x

7. Associativity of · :

∀α, β ∈ F, x ∈ V (α · β) · x = α · (β · x)

8. Multiplicative identity:
∀x ∈ V 1 · x = x

(Note that 1 is the multiplicative identity in F ; 1 6∈ V )

We often say “V is a vector space over F ”.

Examples:

1. Rn over R.

2. R is a vector space over Q:

(scalar multiplication) q · r = qr (product in R)

R is not finite-dimensional over Q, i.e. R is not Qn for any n ∈ N.

3. R is a vector space over R.

4. Q(
√

2) is a vector space over Q. As a vector space, it is Q2; as a field, you need to
take the funny field multiplication.

5. Q( 3
√

2), as a vector space over Q, is Q3.

6. (F2)
n is a finite vector space over F2.

7. C([0, 1]), the space of all continuous real-valued functions on [0, 1], is a vector space
over R.

• vector addition:
(f + g)(t) = f(t) + g(t)

Note we define the function f + g by specifying what value it takes for each
t ∈ [0, 1].

• scalar multiplication:
(αf)(t) = α(f(t))

• vector additive identity: 0 is the function which is identically zero: 0(t) = 0 for
all t ∈ [0, 1].
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• vector additive inverse:
(−f)(t) = −(f(t))

Section 1.6 Axioms for R

One can show that R is characterized by the following axioms, that is, that there exists
a field that satisfies these axioms, and this is what we define as the set of real numbers.

1. R is a field with the usual operations +, ·, additive identity 0, and multiplicative
identity 1.

2. Order Axiom: There is a complete ordering ≤, i.e. ≤ is reflexive, transitive, anti-
symmetric (α ≤ β, β ≤ α ⇒ α = β) with the property that

∀α, β ∈ R either α ≤ β or β ≤ α

The order is compatible with + and ·, i.e.

∀α, β, γ ∈ R

{

α ≤ β ⇒ α + γ ≤ β + γ

α ≤ β, 0 ≤ γ ⇒ αγ ≤ βγ

α ≥ β means β ≤ α.
α < β means α ≤ β and α 6= β.

3. Completeness Axiom: Suppose L, H ⊆ R, L 6= ∅ 6= H satisfy

∀` ∈ L, h ∈ H ` ≤ h

Then
∃α ∈ R s.t. ∀` ∈ L, h ∈ H ` ≤ α ≤ h

α

L ↓ H

−−−− ) · ( −−−−

The Completeness Axiom differentiates R from Q: Q satisfies all the axioms for R except
the Completeness Axiom.

The most useful consequence of the Completeness Axiom (and often used as an alternative
axiom) is the Supremum Property.

Definition 4 Suppose X ⊆ R. We say u is an upper bound for X if

x ≤ u ∀x ∈ X

and ` is a lower bound for X if
` ≤ x ∀x ∈ X

X is bounded above if there is an upper bound for X, and bounded below if there is a lower
bound for X.
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Definition 5 Suppose X is bounded above. The supremum of X, written sup X, is the
least upper bound for X, i.e. supX satisfies

sup X ≥ x ∀x ∈ X (sup X is an upper bound)

∀y < sup X ∃x ∈ X s.t. x > y (there is no smaller upper bound)

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest
lower bound for X, i.e. inf X satisfies

inf X ≤ x ∀x ∈ X (inf X is a lower bound)

∀y > inf X ∃x ∈ X s.t. x < y (there is no greater lower bound)

If X is not bounded above, write supX = ∞. If X is not bounded below, write inf X =
−∞. By convention, sup ∅ = −∞, inf ∅ = +∞.

The Supremum Property: Every nonempty set of real numbers that is bounded above has
a supremum, which is a real number. Every nonempty set of real numbers that is bounded
below has an infimum, which is a real number.

Note: sup X need not be an element of X. For example, sup(0, 1) = 1 6∈ (0, 1).

Theorem 6 (Theorem 6.8, plus . . . ) The Supremum Property and the Completeness Ax-

iom are equivalent.

Proof: Assume the Completeness Axiom. Let X ⊆ R be a nonempty set which is bounded
above. Let U be the set of all upper bounds for X. Since X is bounded above, U 6= ∅. If
x ∈ X and u ∈ U , x ≤ u since u is an upper bound for X. So

x ≤ u ∀x ∈ X, u ∈ U

By the Completeness Axiom,

∃α ∈ R s.t. x ≤ α ≤ u ∀x ∈ X, u ∈ U

α is an upper bound for X, and it is less than or equal to every other upper bound for X,
so it is the least upper bound for X, so sup X = α ∈ R. The case in which X is bounded
below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose L, H ⊆ R, L 6= ∅ 6= H, and

` ≤ h ∀` ∈ L, h ∈ H

Since L 6= ∅ and L is bounded above (by any element of H), α = sup L exists and is real.
By the definition of supremum, α is an upper bound for L, so

` ≤ α ∀` ∈ L
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Suppose h ∈ H. Then h is an upper bound for L, so by the definition of supremum, α ≤ h.
Therefore, we have shown that

` ≤ α ≤ h ∀` ∈ L, h ∈ H

so the Completeness Axiom holds.

Theorem 7 (Archimedean Property, Theorem 6.10 + ...)

∀x, y ∈ R, y > 0 ∃n ∈ N s.t. ny = (y + · · · + y) > x

n times

Proof: Exercise. This is a nice exercise in proof by contradiction, using the Supremum
Property.

Theorem 8 (Intermediate Value Theorem) Suppose f : [a, b] → R is continuous, and

f(a) < d < f(b). Then there exists c ∈ (a, b) such that f(c) = d.

Proof: Later, we will give a slick proof. Here, we give a bare-hands proof using the Supre-
mum Property. Let

B = {x ∈ [a, b] : f(x) < d}
a ∈ B, so B 6= ∅; B ⊆ [a, b], so B is bounded above. By the Supremum Property, supB

exists and is real so let c = sup B. Since a ∈ B, c ≥ a. B ⊆ [a, b], so c ≤ b. Therefore,
c ∈ [a, b]. (See Figure 1.)

We claim that f(c) = d. If not, suppose f(c) < d. Then since f(b) > d, c 6= b, so c < b.

Let ε = d−f(c)
2

> 0. Since f is continuous at c, there exists δ > 0 such that

|x − c| < δ ⇒ |f(x)− f(c)| < ε

⇒ f(x) < f(c) + ε

= f(c) + d−f(c)
2

= f(c)+d

2

< d+d
2

= d

so (c, c + δ) ⊆ B, so c 6= sup B, contradiction. (See Figure 2.)

Suppose f(c) > d. Then since f(a) < d, a 6= c, so c > a. Let ε = f(c)−d

2
> 0. Since f is

continuous at c, there exists δ > 0 such that

|x − c| < δ ⇒ |f(x) − f(c)| < ε

⇒ f(x) > f(c) − ε

= f(c) − f(c)−d

2

= f(c)+d

2

> d+d
2

= d
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so (c− δ, c + δ) ∩B = ∅. So either there exists x ∈ B with x ≥ c + δ (in which case c is not
an upper bound for B) or c − δ is an upper bound for B (in which case c is not the least
upper bound for B); in either case, c 6= sup B, contradiction. (See Figure 3.)

Since f(c) 6< d, f(c) 6> d, and the order is complete, f(c) = d. Since f(a) < d and
f(b) > d, a 6= c 6= b, so c ∈ (a, b).

Corollary 9 There exists x ∈ R such that x2 = 2.

Proof: Let f(x) = x2, for x ∈ [0, 2]. f is continuous. f(0) = 0 < 2 and f(2) = 4 > 2, so by
the Intermediate Value Theorem, there exists c ∈ (0, 2) such that f(c) = 2, i.e. c2 = 2.

Read sections 1.6(c) (absolute values) and 1.7 (complex numbers) on your own.
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Figure 1: Intermediate Value Theorem. Claim: d = f(c), where
c = sup{x ∈ [a, b] : f(x) < d}.

a

f(a)

f(b)

b

d

ca

f(a)

f(b)

b

f(c)

c

d

 

2!

Figure 2: Intermediate Value Theorem. If d > f(c), find x > c with f(c) < f(x) < f(d)
using continuity.
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Figure 3: Intermediate Value Theorem. If d < f(c), using continuity find δ > 0 with d < f(x)
for any x ∈ (c − δ, c + δ).
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