
Economics 204
Fall 2010
Problem Set 1 Solutions

1. Some practice with set theory:

(a) Determine the truth of the following statements. Prove them if true, if not
provide counter-examples. 1

i. A \B = C =⇒ A = B ∪ C
ii. A = B ∪ C =⇒ A \B = C

Solution.

i. No, A \B = C only implies that A ⊂ B ∪ C.
ii. No, A = B ∪ C only implies A \B ⊂ C.

For counterexample to (i.) consider A = {1, 2} and B = {2, 3} hence
C = {1}. But A = {1, 2} 6= {1, 2, 3} = C ∪B.

For counterexample to (ii.) consider B = C = {1} hence A = {1} but
A \B = {∅} 6= {1} = C.

(b) Establish the relationship between sets X and Y (X ⊂ Y, X ⊃ Y, X = Y ,
or none of the above), if 2

i. X = A ∪ (B \ C), Y = (A ∪B) \ (A ∪ C);

ii. X = (A ∩B) \ C, Y = (A \ C) ∩ (B \ C);

iii. X = A \ (B ∪ C), Y = (A \B) ∪ (A \ C).

Solution.

i. X ⊃ Y , ii. X = Y , iii. X ⊂ Y .

2. Let f : A→ B and let B1 and B2 be subsets of B.

(a) Show that f−1 preserves intersections and differences of sets

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)

Solution. Lets prove this two statements through two-way set inclusion.
In other words, we will first show that f−1(B1 ∩B2) ⊇ f−1(B1)∩ f−1(B2)

1Note that A\B means the set difference between A and B, denoted by A ∼ B in de la Fuente.
Thus, to clarify, A\B = {x ∈ A | x 6∈ B}.

2None of the above would mean that sets X and Y are not comparable under set inclusion.
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and then f−1(B1∩B2) ⊆ f−1(B1)∩ f−1(B2). We prove that f−1 preserves
differences of sets in the same way.

So, take b ∈ f−1(B1) ∩ f−1(B2), then f(b) ∈ B1 and f(b) ∈ B2. This
implies f(b) ∈ B1 ∩B2. Thus, b ∈ f−1(B1 ∩B2) and we have shown that

f−1(B1 ∩B2) ⊇ f−1(B1) ∩ f−1(B2).

Conversely, observe that for any sets B1 and B2 we must have f−1(B1 ∩
B2) ⊆ f−1(B1) and f−1(B1 ∩B2) ⊆ f−1(B2). Thus, we have

f−1(B1 ∩B2) ⊆ f−1(B1) ∩ f−1(B2).

Combining these two set inclusion statements we get the result we seek.

Now, take b ∈ f−1(B1 \ B2) then f(b) ∈ B1 \ B2. So, f(b) 6∈ B2 but
f(b) ∈ B1. So, we must have b ∈ f−1(B1) \ f−1(B2) and thus

f−1(B1 \B2) ⊆ f−1(B1) \ f−1(B2).

Conversely, take b ∈ f−1(B1) \ f−1(B2), then b 6∈ f−1(B2). So, f(b) 6∈ B2

but f(b) ∈ B1. That is f(b) ∈ B1 \ B2. Therefore, b ∈ f−1(B1 \ B2) and
we have

f−1(B1 \B2) ⊇ f−1(B1) \ f−1(B2).

Again, as before, by combining these two set inclusion statements we get
the result we seek.

(b) Is the same true about f? Does it preserve intersections and differences
of sets? For the case(s) it does not, please provide examples (you do not
need to prove those facts rigorously).

Solution. No, it is not true both for intersections and differences of sets,
unless f is injective. Take intersection of sets first. Let A1 and A2 be
subsets of A. Clearly, the expression f(A1 ∩ A2) = f(A1) ∩ f(A2) is not
always true. Consider, for instance, f(x) = sinx and A1 = [0, 3π

4
], A2 =

[π
2
, 3π

2
], then we have f(A1) = [0, 1], f(A2) = [−1, 1], thus,

f(A1 ∩ A2) = f

([
π

2
,
3π

4

])
6= f(A1) ∩ f(A2) = [0, 1].

For a general f the following set inclusion is true: f(A1 ∩ A2) ⊂ f(A1) ∩
f(A2).

Now consider set differences. Let f(x) = x2, A1 = (−∞,+∞), A2 =
[0,+∞), then

f(A1 \ A2) = f((−∞, 0)) = (0,+∞).

Therefore, f(A1 \ A2) ⊃ f(A1) \ f(A2) and we definitely do not get an
equality because f(A1) \ f(A2) = ∅. When f is not injective one can only
ascertain that f(A1 \ A2) ⊃ f(A1) \ f(A2).
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(c) What about inclusion and unions of sets (both for f and f−1)? Just state
the result, no explanation is necessary.

Solution. Yes, it is true. Inclusion and unions of sets are preserved both
under f and inverse mapping f−1, i.e. we have

B1 ⊂ B2 =⇒ f−1(B1) ⊂ f−1(B2)

f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2)

and

A1 ⊂ A2 =⇒ f(A1) ⊂ f(A2)

f(A1 ∪ A2) = f(A1) ∪ f(A2).

3. Using induction prove

(a) Imagine that the only money in the world are three and five cents coins.
Prove that you can pay (without change!) any sum greater then seven
cents.

Solution. First, consider the case where n = 8 (the base case): it is clear
that 8 cents can be paid by 5 and 3 cents, 8=5+3. Now suppose that the
statement holds for some n (the inductive hypothesis). We want to show
that it holds for n+ 1 as well (the inductive step). Consider two cases: in
n cent sum there is at least one 5 cent coin or none. In the former case,
replace the 5 cent coin by three 3 cent ones. In the latter case, n cents are
represented by 3 cent coins only, and it is clear that there are no less then
three of them. Therefore, replace three 3 cent coins by two 5 cent coins.

Thus, we have show that if n cents can be paid by five and three cent coins
only, so can n+ 1 cents. We are done.

(b) Let n > 1 and x > −1, prove that (1+x)n ≥ 1+nx. When is the inequality
sharp?

Solution. The claim is trivially true for any n if x = 0. So, without any
loss of generality take x 6= 0. First, consider the case where n = 2 (the
base case): it is clear that inequality is true (1+x)2 = 1+2x+x2 > 1+2x
because x2 > 0, x 6= 0. Now suppose that the statement holds for some
n (the inductive hypothesis), i.e. (1 + x)n > 1 + nx for n ≥ 2, n ∈ N.
We want to show that it holds for n+ 1 as well (the inductive step). Lets
multiply both sides of the inequality in the inductive step by 1 + x (which
is strictly positive by our assumption), we obtain

(1 + x)n(1 + x) > (1 + nx)(1 + x)

(1 + x)n+1 > (1 + (n+ 1)x) + nx2

Since nx2 > 0 we obtain the result we seek.

Clearly, inequality is sharp if and only if x = 0.
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4. Let f : A→ B be a surjective function. Let us define a binary relation R on A
by a0R a1 if f(a0) = f(a1).

(a) Show this is an equivalence relation.

Solution. To show that R is an equivalence relation on A, we need to
show that it is reflexive, symmetric and transitive. All these properties of
R follow naturally from the corresponding properties for equality, i.e.

reflexivity Clearly, ∀a0 ∈ A, a0Ra0 because a0R a0 ⇐⇒ f(a0) = f(a0).

symmetry We need to show that ∀a0, a1 ∈ A, a0R a1 ⇐⇒ a1R a0.
This is true because equality is symmetric: a0R a1 =⇒ (f(a0) =
f(a1)) =⇒ (f(a1) = f(a0)) =⇒ a1R a0

transitivity We need to show that ∀a0, a1, a2 ∈ A, (a0R a1∧a1R a2) =⇒
a0R a2. Again, this is true because a0R a1 =⇒ f(a0) = f(a1) and
a1R a2 =⇒ f(a1) = f(a2). Since (f(a0) = f(a1) = f(a2)) =⇒
(f(a0) = f(a2)), we have that a0R a2.

(b) Let A∗ be the set of equivalence classes. Show there is a bijective corre-
spondence of A∗ with B.

Solution. Let A∗ = {[a] |a ∈ A} be the equivalence classes that R induces
on A. Given a function f : A → B we can define a function f ∗ that will
map the equivalence classes into elements of range of f, i.e. f ∗ : A∗ → B.
We define f ∗ in the following way: f ∗([a]) = f(a) and claim that f is a
bijection.

To show that we need to demonstrate that f is surjective and one-to-
one. Surjection is immediate, since given b ∈ B, there an a ∈ A such
that f(a) = b because f is surjective. Because f ∗([a]) = b, f ∗ is clearly
surjective. To see that f ∗ is one-to-one, suppose, that f ∗([a0]) = f ∗([a1]).
By the definition of f ∗ we get f(a0) = f(a1) which means that a0R a1.
Therefore, a0 and a1 are in the same equivalence class, [a0] = [a1], thus, f ∗

must be one-to-one.

5. Let A be a countable set and f : A→ B. Show that B is at most countable if
B = f(A).

Solution. Since A is countable we can find a bijection a : N → A. For each
n set an = a(n). Then for each b ∈ B define m(b) = min{n ∈ N : f(an) = b}
and let Nf = m(B) ⊆ N. Then f ◦ a : m(B)→ B is a bijection: if n 6= n′ then
an 6= an′ and n, n′ ∈ m(B) ⇒ f(an) 6= f(an′). Since B = f(A), f ◦ a is clearly
onto. If m(B) is finite we’re done, so suppose m(B) is infinite. We must show
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it is countable. Since m(B) ⊆ N,

set n0 = minm(B)

set n1 = minm(B) \ {n0}
set n2 = minm(B) \ {n0, n1}

...

set nk = minm(B) \ {n0, n1, . . . , nk−1}

Since m(B) is infinite, n1 < n2 < . . . and nk is well-defined for each k. For each
n ∈ m(B) there exists k such that n = nk. Thus m(B) is countable.

It is important to emphasize that there is a general result that underlines our
proof above: if X is countable and S ⊆ X is nonempty, then S is either finite or
countable. Observe that above we showed this for N. To see this, suppose S is
an infinite subset of X (as above, if S is finite we’re done). Let g : N→ X be a
bijection. Since S is infinite, {n ∈ N : g(n) ∈ S} is infinite. Define h : N → S
as follows:

set n0 = min{n ∈ N : g(n) ∈ S} and h(0) = g(n0)

set n1 = min{n ∈ N \ {n0} : g(n) ∈ S} and h(1) = g(n1)

set n2 = min{n ∈ N \ {n0, n1} : g(n) ∈ S} and h(2) = g(n2)
...

set nk = min{n ∈ N \ {n0, n1, . . . , nk−1} : g(n) ∈ S} and h(k) = g(nk)

Since S is infinite, n1 < n2 < . . . and nk is well-defined for each k. Thus
h : N→ S. Since g is 1-1, h is 1-1. Since g is onto and S ⊆ X, for each s ∈ S
there exists n ∈ N such that g(n) = s, so ∃k such that nk = n and h(k) = n.
So h is onto, which shows that S is countable.

From this it follows that if there exists a 1-1 function r : S → N then S is either
finite or countable (because r : S → r(S) is a bijection and r(S) ⊆ N must be
either finite or countable).

Equivalently, if there exists a surjection f : N → S then S is either finite or
countable. This follows because for each s ∈ S, f−1(s) = {n ∈ N : f(n) = s} 6= ∅,
so set r(s) = min{n ∈ N : f(n) = s}. Then r : S → N is 1-1, so by the above
argument S is either finite or countable.

Finally, there is another way to establish the this fact using results from the
previous exercise part (b). As above, without any loss of generality take A = N.
Because A∗ defined as in the previous exercise is a partition of A, there is a
bijection g from A∗ into subsets of A which we define by choosing an element in
each set [a]. Now, since f ∗ : A∗ → B is a bijection, (f ∗)−1 ◦ g gives a bijection
from B to a subset of A.
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6. Let X and Y be non-empty sets of R, such that

• for any x ∈ X and any y ∈ Y we have x ≤ y

• for any ε > 0 there is xε ∈ X and yε ∈ Y , such that yε − xε < ε

Show that supX = inf Y .

Solution. Firstly note that X is bounded above and Y is bounded below so
supX and inf Y are just some real numbers. Before proceeding with the proof
lets state and prove a claim that will be useful for us later:

x ≤ y ∀x ∈ X, ∀y ∈ Y =⇒ supX ≤ inf Y

Fix y ∈ Y . Since x ≤ y ∀x ∈ X y is an upper bound for X. Thus, by
definition of sup we have supX ≤ y. Now, since our choice of y ∈ Y was
arbitrary, we have that supX ≤ y ∀y ∈ Y . Thus, supX is a lower bound for
Y . This implies that supX ≤ inf Y by definition of infimum.

Lets prove the claim. Assume, to contradiction, that supX < inf Y (the other
case is impossibly by our result above). So, let ε = inf Y − supX and observe
that under our hypothesis ε > 0. Given ε

2
lets find such xε ∈ X and yε ∈ Y so

that yε− xε < ε
2
. By definition of inf we must have yε ≥ inf Y and xε ≤ supX.

Now, if we can show that supX < xε we would get a contradiction and would
be done. So note

supX = inf Y − ε ≤ ε

2
+ xε − ε =⇒ supX ≤ xε −

ε

2

Thus, supX < xε, because ε > 0.

7. Determine which of the following is a metric on R?

(a) d(x, y) = |x− 2y|
(b) d(x, y) = |x−y|

1+|x−y|

Solution. Recall the defining properties of a metric:
1. d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y ∀x, y ∈ R
2. d(x, y) = d(y, x) ∀x, y ∈ R
3. d(x, y) + d(y, z) ≥ d(x, z) ∀x, y, z ∈ R.

The function in (b) is a metric, however, the one in (a) is not because of
the violation of one of the property (1) above. d(x, x) = |x| 6= 0, unless
x = 0.

The relatively straightforward verification of properties (1) and (2) for (b)
is omitted. We verify the triangle inequality. Note that

|x− y|
1 + |x− y|

=
1 + |x− y|
1 + |x− y|

− 1

1 + |x− y|
= 1− 1

1 + |x− y|
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To simplify calculations a bit, lets denote a = |x − y|, b = |y − z|, c =
|x − z| and note that triangle inequality for absolute value in R implies
that a+ b ≥ c. Then

1− 1

1 + a
+ 1− 1

1 + b
≥ 1− 1

1 + c
⇐⇒

1

1 + a
+

1

1 + b
≤ 1 +

1

1 + c
⇐⇒

2 + a+ b

1 + a+ b+ ab
≤ 2 + c

1 + c
=

1

1 + c
+ 1

Lets work with left hand side of this inequality first

1 + 1 + a+ b

1 + a+ b+ ab
≤ 1

1 + a+ b+ ab
+

1 + a+ b+ ab

1 + a+ b+ ab

≤ 1

1 + a+ b+ ab
+ 1

Now, we have

a+ b ≥ c =⇒ a+ b+ ab ≥ c =⇒
1

1 + a+ b+ ab
≤ 1

1 + c
=⇒

1

1 + a+ b+ ab
+ 1 ≤ 1

1 + c
+ 1.

So, we are done.

8. Suppose that a sequence {xn} in a metric space has the property that exists x,
such that any subsequence has in turn a further subsequence that converges to
x. Prove that {xn} → x and that converse is also true.

Solution.

Assume every subsequence xnk
itself has a further subsequence that converges

to x. We wish the show that this implies the convergence of the full sequence.
Proceeding by contradiction, assume not. Then, from the definition, there must
be some ε > 0 such that d(xn, x) > ε for infinitely many n. Define xnk

to then
be the (infinite) subsequence of xn for which this is true. It then follows that
xnk

itself has no subsequence that converges to x since every term of the full
sequence was chosen to be at least distance ε from x. Contradiction.

Lets now prove the converse. If the sequence converges to x, then clearly every
subsequence converges to x. To check this let xnk

be a subsequence. For any
ε > 0 convergence of xn tells us that ∃N(ε) such that n > N(ε) ⇒ d(xn, x) <
ε. In particular, for all nk > N(ε) we must have d(xnk

, x) < ε. Hence, the
subsequence xnk

converges to x. Now note that xnk
is a subsequence of itself

and because it converges to x we have found a subsequence of xnk
that converges

to x.
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