
Economics 204
Fall 2010
Problem Set 2 Suggested Solutions

1. Determine whether the following sets are open, closed, both or neither:

(a) Z in the topology on R induced by the usual metric;

(b) {1/n | n ∈ N} in the topology on R induced by the usual metric;

(c) Q in the topology on R induced by the usual metric;

(d) {(x, y) ∈ R2 | y ≥ x2};
(e) {(x, y) ∈ R2 | |y| > x}.

Solution:

(a) Closed: since ∀j ∈ Z, (j, j+1) is open, so is the infinite union
⋃∞

j=−∞(j, j+
1), i.e. R\Z is open. Hence, Z is closed. On the other hand, every open
ball around any j ∈ Z is clearly not contained in Z, so Z is not open.

(b) Neither: ∀ε > 0, Bε(1) is not contained in the set, so it is not open.
Consider the sequence {dm = 1/m} for m ∈ N. Obviously, dm is contained
in the set and converges to 0 which does not belong to the set, so it is not
closed either.

(c) Neither: consider the sequence {
√

2/m} for m ∈ N. We know that ∀m ∈
N,
√

2/m ∈ {R\Q}. However, that sequence converges to 0 ∈ Q, i.e. R\Q
is not closed and therefore Q is not open. On the other hand, note that√

2 can be written as the infinite decimal 1.41421356 . . .. Let x1 = 1, x2 =
1.4, x3 = 1.41, . . . , xm =the number formed by the first m digits of the
decimal expansion of

√
2. Then xm →

√
2 /∈ Q, i.e. Q is not closed.

(d) Closed: first, note that if a function g : R → R is continuous, then the
functions H,G : R2 → R defined by:

G(x, y) = g(x);H(x, y) = g(y)

are continuous. Then for some open A ⊆ R we have:

G−1(A) = g−1(A)× R
H−1(A) = R× g−1(A).

If g is continuous, g−1(A) is open. Since R is open, G−1(A) and H−1(A)
are also open and, hence, G and H are continuous.

We can then use this to show that the function f : R2 → R defined by
f(x, y) = y − x2 is continuous. Letting H(x, y) = y and G(x, y) = x2,
H(x, y) and G(x, y) are continuous on R2 by the argument above and
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hence f = H − G is continuous as well. Now consider the set we are
interested in:

{(x, y) ∈ R2 : y ≥ x2}
= {(x, y) ∈ R2 : f(x, y) ≥ 0}
= f−1([0,∞))

f is continuous and [0,∞) is closed; therefore, the set under consideration
must be closed as it is a continuous inverse image of a closed set.

The set is not open. We see that (0, 0) is an element of it and any open ball
around (0, 0) contains some (x·, y·) with y· < 0. Clearly though, (x·, y·) is
not an element of our set.

(e) Open: since the absolute value and identity functions are continuous (in
fact, see the discussion below to see that any norm is continuous in the met-
ric space it induces and how that relates to the “reverse triangle inequal-
ity”), we can use the argument outlined in the beginning of the previous
part to show that g(x, y) = |y| − x is continuous. Then:

{(x, y) ∈ R2 : |y| > x}
= {(x, y) ∈ R2 : g(x, y) > 0}
= g−1((0,∞))

g is continuous and (0,∞) is open, so our set is open as well.

The set is not closed since the sequence {0, 1/n} is entirely contained within
the set but its limit (0, 0) is not an element of the set.

Aside: To show the continuity of the norm function in the metric space
that it induces, let us first derive the “reverse triangle inequality” from the
triangle inequality. Take some x, y ∈ V with the norm ‖ · ‖ defined on it.
Then:

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖

so
‖x‖ − ‖y‖ ≤ ‖x− y‖.

Switching the roles of x and y in the above argument yields

‖y‖ − ‖x‖ ≤ ‖x− y‖

so
‖x− y‖ ≥ | ‖x‖ − ‖y‖ |,

which is the reverse triangle inequality.

From here the continuity of ‖ · ‖ viewed as a function from V to R follows,
as for any ε > 0, set δ = ε and note that if ‖x− y‖ < δ then

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ < δ = ε.

2. Give examples of the following:
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(a) A continuous function f : S → R, where S is a closed subset of R, that
attains neither a maximum nor a minimum on S;

(b) A continuous function f : S → R, where S is a closed and unbounded
subset of R, that attains both a maximum and a minimum on S;

(c) A continuous function f : S → R, where S is a bounded subset of R, that
attains neither a maximum nor a minimum on S;

(d) A continuous function f : S → R, where S is a bounded but not closed
subset of R, that attains both a maximum and a minimum on S;

(e) A discontinuous function f : S → R, where S is a closed and bounded
subset of R, that attains neither a maximum nor a minimum on S;

(f) A discontinuous function f : S → R, where S is a closed and bounded
subset of R, that attains both a maximum and a minimum on S.

Solution:

(a) f : R→ R defined by f(x) = x;

(b) f : R→ R defined by f(x) = 2;

(c) f : (0, 1)→ R defined by f(x) = x;

(d) f : (0, 1)→ R defined by f(x) = 2;

(e) f : [−1, 1]→ R defined by f(x) =

{
1/x if x 6= 0

0 if x = 0
;

(f) f : [−1, 1]→ R defined by f(x) =

{
1 if x ≥ 0

0 if x < 0
.

3. Suppose {xn} is a Cauchy sequence in a metric space X, and some subsequence
{xnt} converges to x ∈ X. Prove that {xn} converges to x.

Solution: Let d be the metric associated with the metric space. Fix ε > 0.
The sequence {xn} is Cauchy, therefore:

∃N(ε/2) : m, p > N(ε/2)⇒ d(xm, xp) < ε/2 (1)

The subsequence {xnt} converges to x, therefore:

∃NT (ε/2) : pt > NT (ε/2)⇒ d(xpt , x) < ε/2 (2)

By (1) and (2), using the triangle inequality it follows that for any xpt ∈ {xnt}
such that pt > max{N(ε/2), NT (ε/2)}:

m > max{N(ε/2), NT (ε/2)} ⇒ d(xm, x) ≤ d(xm, xpt)+d(xpt , x) < ε/2+ε/2 = ε

Therefore {xn} converges to x.
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4. Let E,F ⊆ Rn. For x ∈ E, let g(x) = inf{|x − y| : y ∈ F}. Prove that
g : E → R is continuous.

Solution: Let x ∈ E be fixed and let z be an arbitrary element of E. By the
triangle inequality we get:

g(z) = inf{|z − y| : y ∈ F}
≤ inf{(|z − x|︸ ︷︷ ︸

fixed

+|x− y|) : y ∈ F}

= |z − x|+ inf{|x− y| : y ∈ F}
= |z − x|+ g(x)

Analogously, g(x) ≤ |x− z|+ g(z). Therefore:

|g(z)− g(x)| ≤ |z − x|

since |x− z| = |z − x|.
We need to show that for all positive ε there exists a positive δ such that:

∀z ∈ E : |x− z| < δ ⇒ |g(x)− g(z)| < ε

Let ε be given. Set δ = ε. Consider any z ∈ E such that |x − z| < δ = ε. By
the above: |g(z)− g(x)| ≤ |z − x| < ε.

5. For all subsets A,B of a metric space (X, d) prove:

(a) A is both open and closed if and only if ∂A = ∅;

(b) ∂A = ∂(X\A);

(c) ∂∂A ⊆ ∂A (and give an example of a set A, such that this is a strict
inclusion);

(d) ∂∂∂A = ∂∂A;

(e) ∂(A ∪B) ⊆ ∂A ∪ ∂B.

Solution:

(a) This is immediate using result (3) and theorem 4.8 both on p. 60 in de la
Fuente;

(b) Applying the identity int A ∪ ext A ∪ ∂A = X (see result (2) on p. 60 in
de la Fuente) to both A and X\A and noting that int A = ext (X\A), we
see that ∂A = ∂(X\A);

(c) Using part (b) and the fact that cl A = int A ∪ ∂A, we see that ∂A =
cl A ∩ cl (X\A). This suggests that the boundary of any set is closed as
it is the intersection of two closed sets. Applying cl A = int A ∪ ∂A again
on ∂A = cl ∂A gives the desired result.

An example of a set A, for which the inclusion is strict is the set of all
rational numbers on [0, 1] ∈ R. Then ∂A = [0, 1] and ∂∂A = {0, 1}
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(d) Since the boundary of any set is closed, we’ll prove the more general result:
∂∂S = ∂S for S closed (in our problem ∂A = S).

One inclusion follows from the previous part. We need to show ∂S ⊆ ∂∂S.
Assume toward contradiction that we can find x such that x ∈ ∂S and
x /∈ ∂∂S. By x ∈ ∂S, we have ∀ε > 0 : Bε(x) intersect both S and X\S.
By x /∈ ∂∂S, ∃ε0 : Bε0(x) is entirely contained in ∂S since x ∈ ∂S by the
definition of boundary. Therefore:

Bε0(x) ⊆ ∂S ⊆ S,

which is a contradiction.

(e) Let x ∈ ∂(A ∪ B). Then for all ε > 0, Bε(x) has a nonempty intersection
with both A ∪ B and X\(A ∪ B). If Bε(x) has a nonempty intersection
with A for all ε > 0 then, since X\(A ∪ B) ⊆ X\A, x ∈ ∂A. Similarly, if
Bε(x) has a nonempty intersection with B for all ε > 0, x ∈ ∂B. In other
words: x ∈ ∂A ∪ ∂B.
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