Economics 204
Fall 2010
Problem Set 2 Suggested Solutions

1. Determine whether the following sets are open, closed, both or neither:

(a)
(b)
()
(d)
(e)

Z in the topology on R induced by the usual metric;

{1/n|n € N} in the topology on R induced by the usual metric;
Q in the topology on R induced by the usual metric;

{(z,y) eR? |y = 22}

{(z,y) e R? [ [y| > x}.

Solution:

(a)

(b)

Closed: since Vj € Z, (j,j+1) is open, so is the infinite union (2 (4, 7+
1), i.e. R\Z is open. Hence, Z is closed. On the other hand, every open
ball around any j € Z is clearly not contained in Z, so Z is not open.

Neither: Ve > 0, B.(1) is not contained in the set, so it is not open.
Consider the sequence {d,, = 1/m} for m € N. Obviously, d,, is contained
in the set and converges to 0 which does not belong to the set, so it is not
closed either.

Neither: consider the sequence {v/2/m} for m € N. We know that Vm €
N, v2/m € {R\Q}. However, that sequence converges to 0 € Q, i.e. R\Q
is not closed and therefore Q is not open. On the other hand, note that
V/2 can be written as the infinite decimal 1.41421356. ... Let 2! = 1,22 =
1.4,2% = 1.41,...,2™ =the number formed by the first m digits of the
decimal expansion of v/2. Then 2™ — /2 ¢ Q, i.e. Q is not closed.

Closed: first, note that if a function ¢ : R — R is continuous, then the
functions H, G : R> — R defined by:

G(x,y) = g(x); H(z,y) = g(y)

are continuous. Then for some open A C R we have:

GUA) = g (A) xR
H'(A) = Rxg'(A).

If g is continuous, g1(A) is open. Since R is open, G~*(A) and H~1(A)
are also open and, hence, G and H are continuous.

We can then use this to show that the function f : R? — R defined by
f(z,y) = y — 22 is continuous. Letting H(z,y) = y and G(z,y) = 22,
H(x,y) and G(z,y) are continuous on R? by the argument above and



hence f = H — G is continuous as well. Now consider the set we are

interested in:
{(z,y) e R*: y > 2°}

= {(z,y) e R*: f(z,y) > 0}
= f7([0,00))

f is continuous and [0, 00) is closed; therefore, the set under consideration
must be closed as it is a continuous inverse image of a closed set.

The set is not open. We see that (0, 0) is an element of it and any open ball
around (0, 0) contains some (x",y’) with y* < 0. Clearly though, (z',y’) is
not an element of our set.

(e) Open: since the absolute value and identity functions are continuous (in
fact, see the discussion below to see that any norm is continuous in the met-
ric space it induces and how that relates to the “reverse triangle inequal-
ity”), we can use the argument outlined in the beginning of the previous
part to show that g(x,y) = |y| — = is continuous. Then:

{(z,y) eR?: [y| > 2}
= {(z,y) e R?*: g(z,y) > 0}
= ¢7'((0,00))

g is continuous and (0, c0) is open, so our set is open as well.

The set is not closed since the sequence {0, 1/n} is entirely contained within
the set but its limit (0,0) is not an element of the set.

Aside: To show the continuity of the norm function in the metric space
that it induces, let us first derive the “reverse triangle inequality” from the
triangle inequality. Take some z,y € V' with the norm || - || defined on it.
Then:

2]l = llz =y +yll < llz =yl + vl

SO
[zl = 1lyll < llz = ylI

Switching the roles of x and y in the above argument yields

[yl = Nzl < [l =yl

SO
[ =yl = [zl =1yl ],

which is the reverse triangle inequality.

From here the continuity of || - || viewed as a function from V to R follows,
as for any € > 0, set § = ¢ and note that if ||z — y|| < 0 then

el =yl T < fle =yl <0 =&

2. Give examples of the following:



(a) A continuous function f : S — R, where S is a closed subset of R, that
attains neither a maximum nor a minimum on S;

(b) A continuous function f : S — R, where S is a closed and unbounded
subset of R, that attains both a maximum and a minimum on S;

(¢) A continuous function f : S — R, where S is a bounded subset of R, that
attains neither a maximum nor a minimum on S;

(d) A continuous function f : S — R, where S is a bounded but not closed
subset of R, that attains both a maximum and a minimum on S;

(e) A discontinuous function f : § — R, where S is a closed and bounded
subset of R, that attains neither a maximum nor a minimum on S

(f) A discontinuous function f : S — R, where S is a closed and bounded
subset of R, that attains both a maximum and a minimum on S.

Solution:
(a) f:R — R defined by f(x) = x;
(b) f:R — R defined by f(z) =2;

(¢) f:(0,1) — R defined by f(x) = z;

(d) f:(0,1) — R defined by f(z) =2;

Iz ifx#0

(e) f:[-1,1] — R defined by f(x) = {O £ 0

lifz>0

(f) f:[-1,1] — R defined by f(z) = {O 4 <0

3. Suppose {x,} is a Cauchy sequence in a metric space X, and some subsequence
{zy, } converges to z € X. Prove that {z,} converges to .

Solution: Let d be the metric associated with the metric space. Fix ¢ > 0.
The sequence {z,} is Cauchy, therefore:

AN(e/2) :m,p > N(e/2) = d(zpm, x,) < /2 (1)
The subsequence {x,,} converges to x, therefore:
ANr(e/2) : pr > Np(e/2) = d(xp,,x) < €/2 (2)

By (1) and (2), using the triangle inequality it follows that for any z,, € {z,,}
such that p; > max{N(e/2), Nr(¢/2)}:

m > max{N(e/2), Nr(e/2)} = d(zm,z) < d(zp, xp,)+d(xp,, ) < /2+e/2 =¢

Therefore {z,} converges to x.



4. Let E,F C R". For z € E, let g(z) = inf{|Jzr —y| : y € F}. Prove that
g : . — R is continuous.

Solution: Let x € E be fixed and let z be an arbitrary element of E. By the
triangle inequality we get:

9(z) = inf{lz—y|:yeF}
< inf{(|z —z|+|z—vy|):y € F}
fixed
= |z—z|+inf{lzr —y|:y € F}
= |z —z[+g(z)

Analogously, g(z) < |z — z| + ¢g(z). Therefore:

l9(2) — g(2)| < |z — =
since |z — z| = |z — x|.

We need to show that for all positive € there exists a positive § such that:
VzeE:|lz—z<d=|g(x)—g(2)| <e

Let € be given. Set § = ¢. Consider any z € E such that |z — 2| < d =¢e. By
the above: |g(z2) — g(x)| < |z — x| < e.

5. For all subsets A, B of a metric space (X, d) prove:

(a) A is both open and closed if and only if 0A = &;

(b) A = B(X\A);

(¢) 00A C OA (and give an example of a set A, such that this is a strict
inclusion);

(d) 000A = D0A;

(e) 0(AUB) C0AUIB.

Solution:

(a) This is immediate using result (3) and theorem 4.8 both on p. 60 in de la
Fuente;

(b) Applying the identity int A Uext AU OJA = X (see result (2) on p. 60 in
de la Fuente) to both A and X\ A and noting that int A = ext (X\A), we
see that 0A = (X\A);

(c) Using part (b) and the fact that ¢l A = int A U JA, we see that 04 =
cl Anecl (X\A). This suggests that the boundary of any set is closed as
it is the intersection of two closed sets. Applying cl A =int AU JA again
on 0A = cl 0A gives the desired result.

An example of a set A, for which the inclusion is strict is the set of all
rational numbers on [0, 1] € R. Then 0A = [0, 1] and 00A = {0, 1}
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(d)

Since the boundary of any set is closed, we’ll prove the more general result:
00S = 0S for S closed (in our problem 0A = 5).

One inclusion follows from the previous part. We need to show 05 C 90S.
Assume toward contradiction that we can find x such that z € 05 and
x ¢ 00S. By x € 05, we have Ve > 0 : B.(z) intersect both S and X\S.
By x ¢ 00S, Jeq : B, () is entirely contained in 95 since x € 9S by the
definition of boundary. Therefore:

B.,(x) C0S CS,

which is a contradiction.

Let € (AU B). Then for all ¢ > 0, B.(x) has a nonempty intersection
with both AU B and X\(AU B). If B.(z) has a nonempty intersection
with A for all £ > 0 then, since X\(AU B) C X\A, x € 0A. Similarly, if
B.(x) has a nonempty intersection with B for all ¢ > 0, x € dB. In other
words: x € 0AU0B.



