Economics 204 Fall 2010 Problem Set 2 Due Tue, Aug 3 in Lecture

- 1. Determine whether the following sets are open, closed, both or neither:
 - (a) \mathbb{Z} in the topology on \mathbb{R} induced by the usual metric;
 - (b) $\{1/n \mid n \in \mathbb{N}\}$ in the topology on \mathbb{R} induced by the usual metric;
 - (c) \mathbb{Q} in the topology on \mathbb{R} induced by the usual metric;
 - (d) $\{(x, y) \in \mathbb{R}^2 \mid y \ge x^2\};$
 - (e) $\{(x,y) \in \mathbb{R}^2 \mid |y| > x\}.$
- 2. Give examples of the following:
 - (a) A continuous function $f: S \to \mathbb{R}$, where S is a closed subset of \mathbb{R} , that attains neither a maximum nor a minimum on S;
 - (b) A continuous function $f : S \to \mathbb{R}$, where S is a closed and unbounded subset of \mathbb{R} , that attains both a maximum and a minimum on S;
 - (c) A continuous function $f: S \to \mathbb{R}$, where S is a bounded subset of \mathbb{R} , that attains neither a maximum nor a minimum on S;
 - (d) A continuous function $f: S \to \mathbb{R}$, where S is a bounded but not closed subset of \mathbb{R} , that attains both a maximum and a minimum on S;
 - (e) A discontinuous function $f : S \to \mathbb{R}$, where S is a closed and bounded subset of \mathbb{R} , that attains neither a maximum nor a minimum on S;
 - (f) A discontinuous function $f : S \to \mathbb{R}$, where S is a closed and bounded subset of \mathbb{R} , that attains both a maximum and a minimum on S.
- 3. Suppose $\{x_n\}$ is a Cauchy sequence in a metric space X, and some subsequence $\{x_{n_t}\}$ converges to $x \in X$. Prove that $\{x_n\}$ converges to x.
- 4. Let $E, F \subseteq \mathbb{R}^n$. For $x \in E$, let $g(x) = \inf\{|x y| : y \in F\}$. Prove that $g: E \to \mathbb{R}$ is continuous.
- 5. For all subsets A, B of a metric space (X, d) prove:
 - (a) A is both open and closed if and only if $\partial A = \emptyset$;
 - (b) $\partial A = \partial (X \setminus A);$
 - (c) $\partial \partial A \subseteq \partial A$ (and give an example of a set A, such that this is a strict inclusion);
 - (d) $\partial \partial \partial A = \partial \partial A;$
 - (e) $\partial(A \cup B) \subseteq \partial A \cup \partial B$.