
Economics 204
Fall 2010
Problem Set 3 Solutions

1. In each case, give an example of a function f, continuous on S and such that
f(S) = T, or else explain why there can be no so such f

(a) S = (0, 1), T = (0, 1]

(b) S = (0, 1), T = (0, 1) ∪ (1, 2)

(c) S = R, T = Q

(d) S = [0, 1] ∪ [2, 3], T = {0, 1}
(e) S = [0, 1]× [0, 1], T = R2

(f) S = [0, 1]× [0, 1], T = (0, 1)× (0, 1)

(g) S = (0, 1)× (0, 1), T = R2

Solution.

(a) S = (0, 1), T = (0, 1]

f(x) =

{
2x if x ∈ (0, 1

2
]

1 if x ∈ (1
2
, 1).

(b) S = (0, 1), T = (0, 1) ∪ (1, 2)
No, a continuous functions maps a connected set to a connected set. How-
ever, in this case, S is connected and T is not.

(c) S = R, T = Q
No, again a continuous functions maps a connected set to a connected set.
However, in this case, S is connected and T is not.

(d) S = [0, 1] ∪ [2, 3], T = {0, 1}

f(x) =

{
0 if x ∈ [0, 1]
1 if x ∈ [2, 3].

(e) S = [0, 1]× [0, 1], T = R2

No, a continuous functions sends a compact set to a compact set. However,
in this case, S is compact and T is not.

(f) S = [0, 1]× [0, 1], T = (0, 1)× (0, 1)
No, a continuous functions sends a compact set to a compact set. However,
in this case, S is compact and T is not.

(g) S = (0, 1)× (0, 1), T = R2

f(x, y) = (cot πx, cot πy).
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2. Let X = C([0, 1]), d(f, g) = maxt |f(t)−g(t)|. Show that (X, d) is not compact.

Solution. Recall the sequential definition of compactness: every sequence have
a convergent subsequence. So, we will show that (X, d) is not compact by
giving an example of one such sequence. Consider the following sequence of
constant functions {fn = n ∀n}, which clearly contains no convergent subse-
quence. Therefore, C([0, 1]) with a supremum metric is not compact.

3. Show that any sequence {xn} in a compact metric space X, that has a unique
cluster point x, converges to x.

Solution. Lets prove this statement by contradiction. So, lets assume that that
{xn} 9 x. Then, we can find an ε > 0 such that there exists a subsequence
{xnk
} of {xn}, the elements of which belong to the set X \Bε(x). Since X is a

compact metric space, {xnk
} has a cluster point x̃ 6= x. But X \Bε(x) is closed,

thus, x̃ ∈ X \ Bε(x), so x̃ 6= x. We obtained two different cluster points x and
x̃ which is a contradiction.

4. Assume f : S → T is uniformly continuous on S, where S and T are metric
spaces. If {xn} is any Cauchy sequence in S, prove that {f(xn)} is a Cauchy
sequence in T. Provide an example to show that the statement is not true if f
is just continuous.

Solution. Lets assume that d is a metric on T and ρ is a metric on S. We
need to show that given an ε > 0 there is a N(ε) ∈ N such that for any
n,m ≥ N(ε) we have d(f(xn), f(xm)) < ε. So, fix some ε > 0. Since f is
uniformly continuous there is δ > 0 such that whenever ρ(x, y) < δ, x, y ∈ S
we have d(f(x), f(y)) < ε. By our assumptions, {xn} is a Cauchy sequence,
therefore, for that δ(ε) > 0 there is a positive integer N(δ) ∈ N such that for
any n,m ≥ N(δ) we have ρ(xn, xm) < δ which implies d(f(xn), f(xm)) < ε.
Thus, {f(xn)} is Cauchy.

Now, let xn = 1
n
, f(x) = 1

x
, S = (0, 1] and T = R with usual Euclidean metric

on both spaces. It is easy to see that while {xn} is Cauchy, {f(xn) = n ∀n} is
not because 1

x
is not uniformly continuous.

5. Give an example of each of the following:

(a) a complete metric space that is bounded but not compact.

Solution. Recall the discrete metric defined (on R) as follows:

d(x, y) =

{
1 if x 6= y
0 if x = y
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Then, it is easy to see that (R, d) is a bounded (and complete) metric space,
but it is not compact. Since every point is open with discrete metric, it
follows that the cover {xα}α∈R whose elements are singletons, has no finite
sub-cover.

To see completeness, note that there are no Cauchy sequences in (R, d)
with infinitely many distinct terms. Else, for every xm 6= xn ⇒ d(x, y) = 1.
Hence, the only Cauchy sequences are those that are constant after some
(finite) index n. As constant sequences vacuously converge to their con-
stant value, it follows that the given metric space is complete.

(b) a metric space with the property that none of its closed balls is complete.

Solution. Consider Q ⊂ R with open sets “inherited” from R under the
usual absolute value metric. In other words, a subset V of Q is open if
and only if there exists an open U ⊂ R such that V = U ∩R. It is easy
to see that none of the closed balls could possibly be complete because we
can’t capture irrational limit points.

6. Some practice with connectedness

(a) A space is totally disconnected if its only connected subsets are one-point
sets. Show that if X is endowed with discrete metric, then X is totally
disconnected. Does the converse hold?

Solution. Notice that with discrete metrics every set is open. So, if A ⊂ X
contains more then one element then for every x ∈ A, then two open sets
{x} and A\{x} form a separation of A. Thus, the only connected sets are
singletons.

The converse is not necessarily true. Consider Q ⊂ R with open sets
“inherited” from R under the usual absolute value metric. In other words,
a subset V of Q is open if and only if there exists an open U ⊂ R such
that V = U ∩R. Then Q ⊂ R is totally disconnected (to see this pick an
irrational point t and consider separation Q = (−∞, t) ∪ (t,+∞)).

(b) Show that a topological spaceX is connected if and only if every continuous
function f : X → {0, 1} is constant.1

Solution.

(⇒) Assume that X is connected and let f : X → {0, 1} be any continuous
function. We claim f is constant. Proceeding by contradiction, assume
not. Then, by continuity, U = f−1(1), V = f−1(0) are open subsets of
X. Moreover, they are non-empty if f is non-constant and disjoint. Since
U ∪ V = X we obtain a contradiction to the connectedness of X.

1{0, 1} is endowed with the discrete metric.
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(⇐) We prove the contrapositive: If X is not connected, then there is a
non-constant continuous function f : X → {0, 1}. If X is not connected,
then we may write X = U ∪ V , where U, V are open subsets of X that
form a separation. Define f : X → {0, 1} as follows:

f(x) =

{
1 if x ∈ U
0 if x ∈ V

Clearly, this gives a well-defined, continuous function from X to {0, 1},
proving the contrapositive.

(c) Let X be a connected subset of a metric space S. Let Y be a subset of
S such that X ⊆ Y ⊆ X̄, where X̄ is the closure of X. Prove that Y
is also connected using the result from part (b) of this exercise. Provide
counter-example showing that converse is not true.

Solution. Lets use the result we have just proven. So consider a two-
valued function f on Y . It is easy to see that the restriction of f to Y ,
f |Y is also two valued.2 Given our assumptions, f is constant on X and
without any loss of generality lets assume f = 0 on X. Now, lets consider
y ∈ Y \X. Since X ⊆ Y ⊆ X̄, y must be a limit point of X. This means
that there is a sequence {xn} ⊂ X such that xn → y. Clearly, f(xn) = 0
for all n. f is a continuous function, so

lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(y) = 0

Since point y was arbitrary f = 0 on Y and by previous result we conclude
that Y is connected.

To see that converse does not hold consider Q, a disconnected set with
connected closure.

7. Let X ⊆ En, Y ⊆ Em. Suppose Ψ : X → 2Y is a correspondence. Define
Ψ+(V ) to be upper (or strong) inverse of V ⊆ Y if

Ψ+(V ) = {x ∈ X : Ψ(x) ⊆ V }

and Ψ−(V ) to be lower (or weak) inverse of V ⊆ Y if

Ψ−(V ) = {x ∈ X : Ψ(x) ∩ V 6= ∅}.

Using these definitions show that

2The restriction f |Y is the function from Y to {0, 1} such that f |Y (x) = f(x) for all x ∈ Y .
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(a) For every V ⊆ Y , Ψ+(V ) = [Ψ−(V c)]c

Solution. Note that for all x ∈ X either Ψ(x) ⊆ V or Ψ(x) ∩ V c 6= 0 but
not both. Therefore,

Ψ+(V ) ∪Ψ−(V c) = X

Ψ+(V ) ∩Ψ−(V c) = ∅

Combining these two equalities we obtain the result we seek.

(b) Ψ(x) is uhc ⇐⇒ Ψ−(V ) is closed for every closed set V

Solution.

(=⇒) Assume that Ψ(x) is uhc and let V be a closed set in Y . We need to
show that Ψ−(V ) is closed in X. V c is open and because the strong inverse
of any open set is open, Ψ+(V c) is open. By the result in the previous part

Ψ−(V ) = [Ψ+(V c)]c

thus, Ψ−(V ) is closed as a complement of an open set.

(⇐=) Assume Ψ−(V ) is closed for every closed set V . We need to show
that Ψ(x) is uhc. We do this by showing that Ψ+(W ) is open for any open
W in Y . So, take W open in Y , then W c is closed and Ψ−(W c) is closed
in X. By the result in the previous part

Ψ+(W ) = [Ψ−(W c)]c

thus, Ψ+(V ) is open as a complement to a closed set.

(c) Ψ(x) is lhc ⇐⇒ Ψ+(V ) is closed for every closed set V

Solution.

(=⇒) Assume that Ψ(x) is lhc and let V be a closed set in Y . We need to
show that Ψ+(V ) is closed in X. V c is open and because the weak inverse
of any open set is open, Ψ−(V c) is open. By the result in the previous part

Ψ+(V ) = [Ψ−(V c)]c

thus, Ψ+(V ) is closed as a complement of the open set.

(⇐=) Assume Ψ+(V ) is closed for every closed set V . We need to show
that Ψ(x) is lhc. We do this by showing that Ψ−(W ) is open for any open
W in Y . So, take W open in Y , then W c is closed and Ψ+(W c) is closed
in X. By the result in the previous part

Ψ−(W ) = [Ψ+(W c)]c

thus, Ψ−(V ) is open as a complement to a closed set.
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8. Let X ⊆ En, Y ⊆ Em. Suppose Ψ : X → 2Y is uhc and compact valued-
correspondence. Show that Ψ(K) is compact if K is compact.

Solution. Let {yn} be a sequence in Ψ(K). We have to show that {yn} has
a convergent subsequence with a limit in Ψ(K). For every {yn} there is an
xn with yn ∈ Ψ(xn). Since K is compact, the sequence {xn} has a convergent
subsequence {xnk

} → x ∈ K. Now we appeal to the sequential characterization
of uhc (Theorem 12 in lecture notes 7) to claim that subsequence {ynk

} has a
further subsequence {ynkl

} that converges to y ∈ Ψ(x) ⊆ Ψ(K). Thus, we have
shown that the original sequence {yn} has a convergent subsequence.
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