
Economics 204
Fall 2010
Problem Set 4 Suggested Solutions

1. Prove that any set of pairwise orthogonal nonzero vectors is linearly indepen-
dent.

Solution: Let {x1,x2, . . . ,xn} be a set of pairwise orthogonal nonzero vectors.
Assume

0 = α1x1 + α2x2 + · · ·+ αnxn

This implies:

0 = 0Txj =
n∑

i=1

αix
T
i xj = αjx

T
j xj

for every j = 1, 2, . . . , n. Since xj 6= 0, this implies αj = 0 for every j =
1, 2, . . . , n. We conclude that the set of vectors is linearly independent.

2. Prove that if U , V and U ∪ V are subspaces of a vector space W , then either
U ⊆ V or V ⊆ U .

Solution: Suppose toward contradiction that U * V and V * U . Then there
exist vectors u and v such that:

u ∈ U and u /∈ V, v ∈ V and v /∈ U

Consider u+ v. As we are assuming U ∪V is a subspace, U ∪V is closed under
addition. Hence u + v ∈ U ∪ V and so u + v ∈ U or u + v ∈ V . However, if
u + v ∈ U , then v = (u + v) − u ∈ U , which is a contradiction since U is a
subspace. Similarly, we reach a contradiction if we assume u+ v ∈ V .

3. T : M2×2 →M2×3 is defined by:

T

(
a11 a12
a21 a22

)
=

(
a11 + a21 a11 + 3a22 0
a11 − a12 a12 + a21 0

)
Determine kerT, dim(kerT ), and rank T . Is T one-to-one, onto, both or neither?

Solution: kerT is the set of all 2× 2 matrices of the form(
x x
−x −x/3

)
which is a one-dimensional space. Rank T = 3 because dim(kerT ) + rankT =
dimM2×2 = 4. T is not one-to-one by Theorem 2.13 on p. 126 in de la Fuente.
T is not onto either since the rank of T is 3 and not 6. Alternatively, you can
directly verify that T fails to be both one-to-one and onto.
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4. (a) Suppose that V is a finite-dimensional vector space. Show that a linear
transformation T ∈ L(V ) (i.e. T : V → V ) is invertible if and only if
kerT = {0}.

(b) Suppose again that V is finite-dimensional and T, S ∈ L(V ). Using part
(a), prove that T ◦S is invertible if and only if both T and S are invertible.

Solution:

(a) From applying Theorem 2.9 on p.124 in de la Fuente (the Rank-Nullity
Theorem) to the linear operator T (linear operator is a linear functions
from a space into itself), we see that having a kernel of dimension zero is
equivalent to the following equality:

rank T = dim im T = dimV.

In other words, a linear operator has a kernel of dimension zero if and only
if it is surjective. Using then Theorem 2.13 on p.126 gives us that a linear
operator has a kernel of dimension zero if and only if it is both surjective
and injective or, equivalently, invertible.

Aside: Notice that this result is not true for infinite-dimensional vector
spaces. Consider the following counterexample: T : `2 → `2 (recall we
defined `2 to be the space of all square-summable sequences) defined by:

T ((x1, x2, x3 . . .)) = (0, x1, x2, x3, . . .)

It is easy to verify that T is linear, and that kerT = {0}. But clearly T
is not onto: imT = {y ∈ `2 : y1 = 0}, which is a proper vector subspace
of `2. So T is not invertible. How is this possible? Notice we always have
(regardless of dimension of X) that if T ∈ L(X,X), then

X/ kerT ∼= imT

When T is 1-1, so kerT = {0}, then X/ kerT = X/{0} = X. So we do
know in general that the image of T is isomorphic to X, with T as the
isomorphism. The problem is that an infinite-dimensional vector space can
be isomorphic to a proper vector subspace of itself. Above shows you an
example of this.

(b) Assume that T ◦ S is invertible. We will first check that S is invertible.
By part (a), it suffices to check that kerS = {0}. If ∃w ∈ V,w 6= 0, then:
TSw = T0 = 0. Hence, T ◦ S has a non-zero kernel, a contradiction by
(a). Therefore S is invertible.

If T is not invertible, assume toward contradiction that there is some v ∈ V
with Tv = 0 (v 6= 0). Since S is invertible, it is surjective. Thus, we can
find a w ∈ V such that Sw = v, which implies that (TS)w = T (Sw) =
Tv = 0. This, again, contradicts the invertibility of TS.
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We now prove the converse: assuming that T, S are both invertible, we wish
to check that T ◦ S is invertible. We again check that ker(T ◦ S) = {0}.
To see that this is the case, we note that

w ∈ ker(T ◦ S)⇒ Sw ∈ kerT ⇒ Sw = 0⇒ w ∈ kerS ⇒ w = 0.

5. (a) Prove that the eigenvalues of any upper or lower triangular matrix A are
the diagonal entries of A;

(b) Show that the eigenspace of any matrix A belonging to an eigenvalue λi
(see de la Fuente, p. 147 for a definition) is a vector space;

(c) Show that if λ is an eigenvalue of A then λk is an eigenvalue of Ak for
k ∈ N;

(d) Show that if λ is an eigenvalue of the invertible matrix A then 1/λ is an
eigenvalue of A−1.

Solution:

(a) Let us denote the diagonal elements of A by {t11, t22, t33, . . . , tnn}. Using
induction on the size of the matrix, it is easy to show by directly computing
the determinant through Laplace expansion that the determinant of any
triangular (or diagonal) matrix is the product of its diagonal elements.
Thus the characteristic polynomial for A is:

det(A− λI) = (t11 − λ)(t22 − λ) · · · (tnn − λ),

so the eigenvalues are the tii’s.

(b) To show that the eigenspace is a vector space, we only need to check the
existence of additive identity and inverse elements. Since the eigenspace
contains the 0 vector by definition, we only need to verify the existence of
inverse elements. Denote the eigenspace by Ei. Let v ∈ Ei. Then Av =
λiv. Multiplying both sides by −1 gives us A(−v) = λi(−v)⇒ (−v) ∈ Ei.

(c) We use induction to show not only that λk is an eigenvalue of Ak, but
also that any eigenvector v corresponding to the eigenvalue λ for A also
corresponds to λk for Ak. The base step (k = 1) is trivial. For the induction
step, assume Av = λv and Akv = λkv. Now consider Ak+1v:

Ak+1v = Ak(Av) = Ak(λv) = λ(Akv) = λ(λkv) = λk+1v

(d) Let Tv = λv. Premultiply both sides by T−1:

T−1Tv = T−1λv ⇒ v = λT−1v ⇒ T−1v = (1/λ)v
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6. Let Θ be the set of all continuous functions whose domain is the unit interval
[0, 1] and range is the real line R :

Θ ≡ { f(x) | f : [0, 1] → R and f ∈ C0}

Let Φ be the subset consisting of all real polynomials (whose domain is restricted
to the unit interval) of degree at most two:

Φ ≡ { a+ bx+ cx2 | a, b, c ∈ <}

Note that the set Θ is a vector space over the field of real numbers and the
subset Φ is a proper subspace.

(a) Are the vectors {x, (x2− 1), (x2 + 2x+ 1) } linearly independent over R ?

(b) Find a Hamel basis for the subspace Φ.

(c) What is the dimension of Φ ? What is the dimension of Θ ?

Solution:

(a) Apply the usual test for independence of vectors. Solve for a, b, and c such
that

ax+ b(x2 − 1) + c(x2 + 2x+ 1) = 0⇔ (c− b) + (a+ 2c)x+ (b+ c)x2 = 0

We obtain the following system of equations:

b+ c = 0
a+ 2c = 0
c− b = 0

Solving it, we get a = b = c = 0. Thus, the three vectors are linearly
independent over R.

(b) {x, x2 − 1, x2 + 2x+ 1} is one possible basis. {1, x, x2} is another one.

(c) 3 and∞, respectively. The dimension of Φ follows immediately from parts
(a) and (b). To see that the dimension of Θ is infinite, note that the set
of vectors {1, x, x2, x3, . . .} is linearly independent over R. Hence, Θ has
a vector subspace of infinite dimension. It follows that Θ itself must have
infinite dimension.
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