Economics 204
Fall 2010
Problem Set 4
Due Tue, Aug 10 in Lecture

1. Prove that any set of pairwise orthogonal nonzero vectors is linearly independent.
2. Prove that if U, V and $U \cup V$ are subspaces of a vector space W, then either $U \subseteq V$ or $V \subseteq U$.
3. $T: M_{2 \times 2} \rightarrow M_{2 \times 3}$ is defined by:

$$
T\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11}+a_{21} & a_{11}+3 a_{22} & 0 \\
a_{11}-a_{12} & a_{12}+a_{21} & 0
\end{array}\right)
$$

Determine $\operatorname{ker} T, \operatorname{dim}(\operatorname{ker} T)$, and $\operatorname{rank} T$. Is T one-to-one, onto, both or neither?
4. (a) Suppose that V is a finite-dimensional vector space. Show that a linear transformation $T \in L(V)$ (i.e. $T: V \rightarrow V)$ is invertible if and only if $\operatorname{ker} T=\{0\}$.
(b) Suppose again that V is finite-dimensional and $T, S \in L(V)$. Using part (a), prove that $T \circ S$ is invertible if and only if both T and S are invertible.
5. (a) Prove that the eigenvalues of any upper or lower triangular matrix A are the diagonal entries of A;
(b) Show that the eigenspace of any matrix A belonging to an eigenvalue λ_{i} (see de la Fuente, p. 147 for a definition) is a vector space;
(c) Show that if λ is an eigenvalue of A then λ^{k} is an eigenvalue of A^{k} for $k \in \mathbb{N}$;
(d) Show that if λ is an eigenvalue of the invertible matrix A then $1 / \lambda$ is an eigenvalue of A^{-1}.
6. Let Θ be the set of all continuous functions whose domain is the unit interval $[0,1]$ and range is the real line \mathbb{R} :

$$
\Theta \equiv\left\{f(x) \mid f:[0,1] \rightarrow \mathbb{R} \text { and } f \in C^{0}\right\}
$$

Let Φ be the subset consisting of all real polynomials (whose domain is restricted to the unit interval) of degree at most two:

$$
\Phi \equiv\left\{a+b x+c x^{2} \mid a, b, c \in \Re\right\}
$$

Note that the set Θ is a vector space over the field of real numbers and the subset Φ is a proper subspace.
(a) Are the vectors $\left\{x,\left(x^{2}-1\right),\left(x^{2}+2 x+1\right)\right\}$ linearly independent over \mathbb{R} ?
(b) Find a Hamel basis for the subspace Φ.
(c) What is the dimension of Φ ? What is the dimension of Θ ?

