
Economics 204
Fall 2010
Problem Set 5 Solutions

1. Recall that a reflection across the x-axis can be achieved with the transformation
(x, y)→ (x,−y). Derive a transformation, T , which reflects a point across the
line y = 3x.

(a) First, calculate the action of T on the points (1, 3) and (−3, 1).

Solution. Since (1, 3) lies on the line y = 3x it is unchanged by T so we
know that T (1, 3) = (1, 3). The slope of the line y = 3x is 3 and the slope
of the vector (−3, 1) is −1

3
. Because the vector is perpendicular with the

line, reflecting it across the line takes is to (3,−1), so T (−3, 1) = (3,−1).

(b) Next, write the matrix representation of T using these two vectors as bases.

Solution. Let

V = {v1, v2} =

{[
1
3

]
,

[
−3
1

]}
.

From (1a) we know that T (v1) = v1 = 1 · v1 + 0 · v2 and T (v2) = −v2 =
0 · v1 − 1 · v2. So we write

P = MtxV (T ) =

[
1 0
0 −1

]
.

(c) Find S and S−1, the matrices that changes coordinates under this basis to
standard coordinates and back again.

Solution. We can easily find S, the matrix that changes coordinates in V
to coordinates under the standard basis, E, because we already expressed
the basis vectors v1 and v2 in terms of standard basis coordinates. We
have

S = MtxE,V (id) = [ v1 v2 ] =

[
1 −3
3 1

]
.

The matrix that changes coordinates from E to V is simply the inverse of
S. So

S−1 = MtxV,E(id) =
1

10

[
1 3
−3 1

]
=

[
1/10 3/10
−3/10 1/10

]
.
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(d) Write the matrix representation of T in the standard basis.

Solution. One way to find MtxE(T ) would be to calculate T (e1) and
T (e2) put the coordinates of these vectors in the columns of MtxE(T ).
However, since we are not given a formula for T—just a description of
its action—it takes a little work to find T (e1) and T (e2). (The reason
we use V as a basis is because it the action of T on these basis vectors
is straightforward.) Instead, we will apply the commutative diagram by
changing coordinates to V , applying T , and changing back to E. In other
words,

MtxE(T ) = MtxE,V (id) ·MtxV (T ) ·MtxV,E(id) = SPS−1

and this equals[
1 −3
3 1

] [
1 0
0 −1

] [
1/10 3/10
−3/10 1/10

]
=

[
−4/5 3/5
3/5 4/5

]
.

(e) Use point (−3, 1) to verify the commutative diagram.

Solutions. We established in (1a) that T (−3, 1) = (3,−1) so now we will
verify that multiplying SPS−1(−3, 1)T yields the same result. Writing out
this computation, we have

SPS−1(−3, 1)T =(SP )(S−1(−3, 1)T ) = (SP )(0, 1)T =

=S(P (0, 1)T ) = S(0,−1)T ,

and this equals [
1 −3
3 1

] [
0
−1

]
= (3,−1)T .

2. Similarity and eigenvalues

(a) Which matrices are similar to the identity matrix? to zero matrix?

Solution. The only matrix similar to the zero matrix is itself: PZP−1 =
PZ = Z. The only matrix similar to the identity matrix is itself: PIP−1 =
PP−1 = I.

(b) What would your answers to (2a) suggest about similarity of the matrix
of the form cI for some scalar c? Or, about a similarity of the diagonal
matrix?

Solution. Because scalar multiples can be brought out of a matrix

P (cI)P−1 = cPIP−1 = cI
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the only matrix similar to cI is itself (notice that zero and identity matrices
are just the special cases with c = 0 and c = 1). This is not true, however
about the diagonal matrix as the following example shows.[

1 −2
−1 1

] [
−1 0
0 −3

] [
−1 −2
−1 −1

]
=

[
−5 −4
2 1

]

(c) Show that if T − λI and N are similar matrices then T and N + λI are
also similar.

Solution. If N = P (T − λI)P−1 then N = PTP−1 − P (λI)P−1. The
diagonal matrix λI commutes with anything, so

P (λI)P−1 = PP−1(λI) = λI.

Thus, we have N = PTP−1− λI and consequently N + λI = PTP−1. So,
not only they are similar, they are similar via the same P .

3. Let A and B denote symmetric real n×n matrices, such that AB = BA. Prove
that A and B have a common eigenvector in Rn.

Solution. Since both A and B are symmetric real matrices, their eigenvalues
and eigenvectors should be real as well. Let ~v ∈ V be an eigenvector of A
corresponding to the eigenvalue λ with V being its eigenspace. We have A~v =
λ~v =⇒ B(A~v) = B(λ~v). Since A and B commute, we have A(B~v) = λB~v.
Since ~v was arbitrary, it shows that V is invariant under B, i.e. B operating
on the vectors in V leaves them in V . Now consider a linear transformation T :
V → V which is a restriction of B to V , T = B|V , in other words T~v = B~v for
all ~v ∈ V . Consider ~v∗, which is an eigenvector of T associated with eigenvalue
µ. Note that B~v∗ ∈ V and B~v∗ = µ~v∗ =⇒ µ~v∗ ∈ V giving us the result we
seek.

4. Consider the following quadratic forms:

f(x, y) = 5x2 + 2xy + 5y2,

g(x, y) = 10xy

Answer the following questions for each of these forms:

(a) Find a symmetric matrix M such that the form equals [x y] M

[
x
y

]
.
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Solution. We seek a, b, c, and d such that:

[
x y

] [ a b
c d

] [
x
y

]
= 5x2 + 2xy + 5y2

The diagonal elements of the matrix are the coefficients of the squared
terms and the off diagonal elements are half of the crossed terms. This
gives us

Mf =

[
a b
c d

]
=

[
5 1
1 5

]
.

For the second quadratic form, g(x, y) = 10xy, we find:

Mg =

[
0 5
5 0

]
.

(b) Find the eigenvalues of the form.

Solution. We compute the characteristic polynomial for each matrix, set
it equal to zero, and solve. We find that the eigenvalues of Mf are 6, 4 and
+5,−5 for the Mg.

(c) Find an orthonormal basis of eigenvectors.

Solution. We find that (1, 1) and (−1, 1) form a basis of eigenvectors
for Mf . To normalize, we divide both vectors by their respective lengths,
which yields an orthonormal basis of eigenvectors:

{v1, v2} =

{(
1/
√

2

1/
√

2

)
,

(
1/
√

2

−1/
√

2

)}
.

Repeating the same process for matrix Mg yields

{w1, w2} =

{(
1/
√

2

1/
√

2

)
,

(
1/
√

2

−1/
√

2

)}
.

(d) Find a unitary matrix S such that M = S−1DS, where D is a diagonal
matrix.

Solution. We do this first for matrix Mf . Note that S−1 = (Mtx)U,V (id),
where U is the standard basis, so the columns are just the eigenvectors:

S−1 =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
.
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Since the columns of S−1 are orthonormal, it follows that S−1 is a unitary
matrix. Since S−1 is unitary, S = (S−1)

−1
= (S−1)

T
, so

S =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
.

Since the eigenvectors of matrix Mg are the same, so will be matrices S
and S−1.

(e) Describe the level sets of the form and state whether the form has a local
maximum, local minimum, or neither at (0, 0). (Level sets are solutions to
f(x, y) = c for some c ∈ R.)

Solution. The quadratic form f is associated with matrix Mf which has
two positive eigenvalues. This means that the level sets are ellipses and
that there is a local minimum at the origin.

The maximum value of the form on the unit circle is simply the norm of
M , which is equal to the largest of the absolute values of the eigenvalues,
which is 6. Similarly, the minimum value of the form on the unit circle is
4. To obtain level sets of the form, we convert to the basis of orthonormal
eigenvectors v1 and v2 and write

f(γ1, γ2) = (γ1, γ2) D

(
γ1
γ2

)
where D is the diagonal matrix of eigenvalues and (γ1, γ2)

T are the coor-
dinates of (x, y)T in the basis {v1, v2}, i.e.(

γ1
γ2

)
= S

(
x

y

)
Thus, we have ellipses associated with the level c described by the equation
6γ21 + 4γ22 = c. For these eclipses major axis is along the line formed by
v1 and a minor axis is along the line formed by v2. The ellipse crosses
the major axis at ±

√
c/4, and crosses the minor axis at ±

√
c/6. Note,

therefore, that the ellipse is longest in the direction of the eigenvector
corresponding to the smallest eigenvalue. (Do you understand why this is?
What is the value of c when the ellipse crosses the minor axis at ±1?).

The form g is associated with Mg, which has one positive and one negative
eigenvalue. This means that there is neither a maximum or a minimum
at the origin. The maximum value of the form on the unit circle is 5, and
the minimum value is -5. Level sets are given by g(γ1, γ2) = 5γ21 − 5γ22 =
c, which generates a hyperbola. Rearranging this to γ1 = ±

√
γ21 − c/5

informs us that the slopes of the asymptotes in the (γ1, γ2) plane are plus
and minus one. Taking first the case that c > 0 and solving for γ2 = 0, we
see that the hyperbola crosses the γ1-axis at γ1 = ±

√
c/5. For c < 0, we

5



Economics 204 Fall 2010 Problem Set 5 Solution

can no longer have γ2 = 0, and we instead solve for γ1 = 0 to learn that
the hyperbola intersects the γ2-axis at the points γ2 = ±

√
−c/5 (and for

c = 0, the hyperbola reduces to the asymptotes).

5. Give a second-order Taylor approximation to the function

f(x, y, z) = cos(x+ y + z)− cosx cos y cos z

assuming that x, y, z are small in absolute value. Estimate your approximation
error.

Solution. Using second-order Taylor expansion for cos x, we have

cosx ≈ 1− x2

2
, cos y ≈ 1− y2

2
, cos z ≈ 1− z2

2
,

cos(x+ y + z) ≈ 1− 1

2
(x+ y + z)2.

Now, plugging this into our expression for f and ignoring expression that are
smaller then second-order term we find

f(x, y, z) = cos(x+ y + z)− cosx cos y cos z

≈ 1− 1

2
(x+ y + z)2 − (1− x2

2
)(1− y2

2
)(1− z2

2
) =

= 1− 1

2
(x2 + y2 + z2)− (xy + xz + yz)− 1+

+
1

2
(x2 + y2 + z2)− 1

4
(x2y2 + x2z2 + y2z2) +

1

8
x2y2z2 =

− (xy + xz + yz).

The error estimate is the difference between the true value of f(x, y, z) and the
Taylor expansion. We write this as:

E3 = cos(x+ y + z)− cosx cos y cos z + (xy + xz + yz)

Where the subscript 3 on E3 indicates that this error term is a third order error

term. It is also O

∣∣∣∣∣∣
x
y
z

∣∣∣∣∣∣
3.

6. Let f : Rn → R be twice continuously differentiable function. A point x ∈ Rn is
a critical point of f if all the partial derivatives of f equal zero at x. A critical
point is nondegenerate if the n× n matrix(

∂2f

∂xi∂xj
(x)

)
6
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is nonsignular.
Let x be a nondegenerate critical point of f . Prove that there is an open
neighborhood of x which contains no other critical points (i.e. the nondegenerate
critical points ar isolated).

Solution. Consider the following function G : Rn → R given by G(x) =
||Of(x)||2. This function has a following Jackobian

DG(x) =

(
∂2f

∂xi∂xj
(x)

)
.

By our assumptions, we have G(x) = 0, G is C1, and DG(x) nonsingular.
Therefore, we can invoke Inverse Function Theorem which guarantees that G is
locally injective in some neighborhood of a nondegenerate critical value x. In
other words, there is no other solutions there.

7. Let x = (x1, x2) ∈ R2 and y = (y1, y2, y3) ∈ R3. Consider a mapping f = (f1, f2)
of R5 into R2 defined by the equation

f1(x,y) = 2ex1 + x2y1 − 4y2 + 3

f2(x,y) = x2 cosx1 − 6x1 + 2y1 − y3
Let x∗ = (0, 1), y∗ = (3, 2, 7) and note that f(x∗,y∗) = (0, 0). Use the implicit
function theorem to prove that there is a C1 mapping g, defined in a neighbor-
hood of y∗, such that g(y∗) = x∗ and f(g(y∗),y∗) = (0, 0). Compute Dg(y∗).

Solution. Lets compute Df(x∗,y∗). Calculating derivatives and plugging in
values for x∗ and y∗ we obtain

Df(x∗,y∗) =

[
2 3 1 −4 0
−6 1 2 0 −1

]
.

Thus, we see that

Dxf(x∗,y∗) =

[
2 3
−6 1

]
, Dyf(x∗,y∗) =

[
1 −4 0
2 0 −1

]
.

in particular, that Dxf(x∗,y∗) is non-singular, and, thus, the Implicit Function
Theorem guarantees the existence of C1 mapping g, defined in the neighborhood
of y∗, such that g(y∗) = (0, 1) and f(g(y∗),y∗) = 0. Since

[Dxf
−1] = [Dxf ]−1 =

1

20

[
1 −3
6 2

]
Using the Theorem to compute Dg(y∗) we obtain

Dg(y∗) = − 1

20

[
1 −3
6 2

] [
1 −4 0
2 0 −1

]
=

[
1/4 1/5 −3/20
−1/2 6/5 1/10

]
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