
Economics 204
Fall 2010
Problem Set 6 Suggested Solutions

1. Suppose Γ : X → 2Y is a correspondence defined by Γ(x) = {f1(x), ..., fN(x)},
where fi : X → Y is continuous for all i ∈ {1, 2, ..., N}. Prove that Γ is both
lhc and uhc.

Solution: To prove that Γ is lhc at x0 ∈ X, we need to show that for every
open set O ⊆ Y with Γ(x0) ∩ O 6= ∅, there is an open set U ⊆ X with x0 ∈ U
such that ∀x ∈ U : Γ(x) ∩O 6= ∅.

Let O be an open set in Y and let Γ(x0)∩O 6= ∅ for some x0 ∈ X. This implies
fi(x0) ∈ O for some i ∈ {1, 2, ..., N}. Since fi is continuous, f−1i (O) ≡ U is
open. We know ∀x ∈ U : fi(x) ∈ O. But fi(x) ∈ Γ(x). Thus:

∀x ∈ U : Γ(x) ∩O 6= ∅.

To prove that Γ is uhc at x0 ∈ X, we need to show that for every open set
O ⊆ Y with Γ(x0) ⊆ O, there is an open set U ⊆ X with x0 ∈ U such that
∀x ∈ U : Γ(x) ⊆ O.

Let O be an open set in Y and let Γ(x0) ⊆ O for some x0 ∈ X. Consider:

U = f−11 (O) ∩ . . . ∩ f−1N (O).

The set U is an intersection of finitely many open sets so it is open. Since clearly
x0 ∈ U , it is non-empty as well. Consider Γ(x) for some x ∈ U . We have:

∀i : x ∈ f−1i (O) ⇒ ∀i : fi(x) ∈ O
⇒ Γ(x) = {f1(x), . . . , fN(x)} ⊆ O.

2. Let f : Rn → Rn be a C1 function. Define F : Rn × Rn → Rn by

F (x, ω) = f(x) + ω

Show that there is a set Ω0 ⊂ Rn of Lebesgue measure zero such that, if ω /∈ Ω0,
then for each x0 satisfying F (x0, ω0) = 0 there is an open set U containing x0,
an open set V containing ω0, and a C1 function h : V → U such that for all
ω ∈ V , x = h(ω) is the unique element of U satisfying F (x, ω) = 0.

Solution: If we can show that the Jacobian of F with respect to all of its
arguments has full rank whenever F (x, ω) = 0, then the Transversality theorem
gives us that there is a set Ω0 ⊂ Rn of Lebesgue measure zero such that, if
ω /∈ Ω0, then for each x0 satisfying F (x0, ω0) = 0, DxF (x0, ω0) has full rank as
well.
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Taking the “full” Jacobian of F , and noting the Jacobian of f by Df ,we have
that:

DF (x, ω) = [Df(x), In]

where In is the n× n identity matrix. This result comes from the fact that the
Jacobian of F with respect to ω is the identity matrix (∂Fi

∂ωi
= 1 and

∂Fj

∂ωi
= 0

∀j 6= i).

In has rank n, so DF (x, ω) must also have rank n, so the condition of the
Transversality theorem is satisfied. Thus, there is a set Ω0 ⊂ Rn of Lebesgue
measure zero such that, if ω /∈ Ω0, then for each x0 satisfying F (x0, ω0) = 0,
|DFx(x0, ω0)| 6= 0.

We now finish the problem by applying the implicit function theorem. This
tells us directly that, whenever F (x0, ω0) = 0 and |DFx(x0, ω0)| 6= 0, there is
an open set U containing x0, an open set V containing ω0, and a C1 function
h : V → U such that for all ω ∈ V ,x = h(ω) is the unique element of U
satisfying F (x, ω) = 0.

3. Let f : X → X be continuous. Give an example of a set X ⊆ Rn and a
continuous function f , such that f does not have a fixed point and X is:

(a) closed, bounded, but not convex;

(b) convex, closed, but not bounded;

(c) convex, bounded, but not closed.

Solution:

(a) X = {0, 1} and f(x) = 1− x;

(b) X = [0,∞) and f(x) = x+ 1;

(c) X = (0, 1) and f(x) = x2.

4. Let A be a nonempty, compact and convex subset of R2 such that if (x, y) ∈ A
for some x, y ∈ R, then there exists some z ∈ R such that (y, z) ∈ A. Prove that
(x∗, x∗) ∈ A for some x∗ ∈ R. (Hint: Use Kakutani’s Fixed Point Theorem)

Solution: We will consider the correspondence Γ : B → 2R defined by Γ(x) =
{y ∈ R : (x, y) ∈ A}. where B = {x ∈ Rn : (x, y) ∈ A for some y ∈ A}
(intuitively, B is the set of first entries of the elements of A).

Fix some x ∈ B. Then if y ∈ Γ(x), (x, y) ∈ A. But (x, y) ∈ A ⇒ (y, z) ∈ A
for some z. Hence y ∈ B and thus Γ(x) ⊆ B for all x ∈ B. This implies that
Γ is a self-correspondence on B. Now notice that if we verify the conditions of
KFPT, we will be done.

We need to show that B is compact, convex and non-empty.
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• B being nonempty follows directly from the definition of B and from A
being nonempty.

• B is convex since A is convex. Namely for any a1, b1 ∈ B, ∃a2, b2 ∈ R :
{(a1, a2), (b1, b2)} ⊂ A:

∀α ∈ (0, 1) : α(a1, a2) + (1− α)(b1, b2) ∈ A
⇒ ∀α ∈ (0, 1) : αa1 + (1− α)b1 ∈ B
⇒ B is convex.

• The projection function d : R2 → R defined by d(x, y) = x is continuous.
Since B is the image of A under d (i.e. B = d(A)) and continuous functions
preserve compactness, B is compact.

We need to show that Γ is convex-, closed-, and non-empty-valued, as well as
uhc.

• Showing that Γ is non-empty-valued is trivial: it follows directly from the
definitions of Γ and B.

• Let x be given and fix some y, z ∈ Γ(x). This implies (x, y), (x, z) ∈ A.
Since A is convex, α(x, y) + (1 − α)(x, z) = (x, αy + (1 − α)z) ∈ A for
all α ∈ [0, 1]. Therefore αy + (1 − α)z ∈ Γ(x) for all α ∈ [0, 1] and Γ is
convex-valued.

• Notice that the graph of Γ is simply the set A. Since A is closed and B is
compact, we can use Theorem 11 (iii) from lecture 7 to deduce that Γ is
closed-valued and uhc.

5. Let A and B be nonempty, convex subsets of Rn with intA 6= ∅. Using the
Separating Hyperplane Theorem, prove that there exists p ∈ Rn with p 6= 0
such that sup p · A ≤ inf p · B if and only if intA ∩ B = ∅. (Hint: You might
want to use the result of Theorem 1.11 in de la Fuente, p.234.)

Solution: Since intA∩B = ∅, intA and B can be separated (intA is convex by
the stated theorem). That is, there exists a non-zero vector p ∈ Rn such that:

sup p · (intA) ≤ inf p ·B.

We can show that sup p · (intA) = sup p · A. It is obvious that sup p · (intA) ≤
sup p · A. To show the other inequality, first we show that every element of a
convex set with a non-empty interior is a limit of a sequence entirely contained
in the interior1. Let x ∈ A and y ∈ intA 6= ∅. Assume Bε(y) ⊆ intA for some
ε > 0. Consider the sequence {zn} = { 1

n
y + (1 − 1

n
)x}. We examine B ε

n
(zn)

1The following proof is identical to the proof of theorem 1.13 on p.235 in de la Fuente. In fact,
you can use that theorem to get the required result.
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for some n. Notice that for all z′ ∈ B ε
n
(zn), z′ = zn + h, where h ∈ Rn and

||h|| < ε
n
. Now notice:

z′ = zn + h =
1

n
y + (1− 1

n
)x+

1

n
(nh) = (1− 1

n
)x+

1

n
(y + nh).

We know ||nh|| = n||h|| < n( ε
n
) = ε, therefore y + nh ∈ Bε(y) ⊆ A. Hence z′ is

a convex combination of x ∈ A and another element of A, so z′ ∈ A. Since z′

is an arbitrary element of B ε
n
(zn), we get B ε

n
(zn) ⊆ A and therefore zn ∈ intA

for all n.

We constructed a sequence converging to an arbitrary x ∈ A that is entirely
contained in the interior of A and since p · x is continuous, we get:

sup p · A ≤ sup p · (intA).

Conversely, suppose that A and B can be separated. That is, there exists p ∈ Rn

such that:
sup p · A ≤ c ≤ inf p ·B

Assume toward contradiction that intA∩B 6= ∅. In particular, let x ∈ intA∩B.
Then p · x = c ≥ sup p · A. The vector p is not zero therefore it has at least
one non-zero element. Without loss of generality, assume that is p1 (i.e. the
first element of p) and assume that p1 > 0 (the other case is analogous). Since
x ∈ intA, ∃ε > 0 : x∗ = x+ (ε, 0, 0, . . . , 0) ∈ A. But then p · x∗ > p · x which is
a contradiction.

6. Consider the second order linear differential equation given by y′′ = 4y′ − 8y.

(a) Show how this equation can be rewritten as the following first order linear
differential equation of two variables:

ȳ′(t) = Aȳ(t)

(b) Verbally describe the solutions of the first order system by analyzing the
matrix A.

(c) Solve the system when y(0) = 3 and y′(0) = 7.

Solution:

(a) Define the new variable ȳ =

[
y
y′

]
. This gives us:

ȳ′ =

[
y′

y′′

]
=

[
y′

4y′ − 8y

]
=

[
0 1
−8 4

] [
y
y′

]
= Aȳ.
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(b) The eigenvalues of A are 2 ± 2i. Since the eigenvalues are complex, the
solutions of the differential equation spiral around the origin. Since the
real parts of the solutions are both positive, the system spirals outward
and the solutions tend to infinity

(c) From the lecture notes, we immediately know the solution is of the form:

y(t) = e2t(C cos(2t) +D sin(2t)).

Substituting in t = 0, we get y(0) = C. From the initial condition then,
C = 3. So:

y(t) = 3e2t cos(2t) +De2t sin(2t).

Differentiating yields:

y′(t) = 6e2t cos(2t)− 6e2t sin(2t) + 2De2t sin(2t) + 2De2t cos(2t).

Setting t = 0 and using the initial condition for y′(0) gives us 6 + 2D = 7
so:

y(t) = 3e2t cos(2t) +
1

2
e2t sin(2t).
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