Economics 204
Fall 2010
Problem Set 6
Due Mon, Aug 16 by 9am in Oleksa's GSI mailbox (Evans, 5th floor)

1. Suppose $\Gamma: X \rightarrow 2^{Y}$ is a correspondence defined by $\Gamma(x)=\left\{f_{1}(x), \ldots, f_{N}(x)\right\}$, where $f_{i}: X \rightarrow Y$ is a continuous function for all $i \in\{1,2, \ldots, N\}$. Prove that Γ is both lhe and uhc.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Define $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
F(x, \omega)=f(x)+\omega
$$

Show that there is a set $\Omega_{0} \subset \mathbb{R}^{n}$ of Lebesgue measure zero such that, if $\omega \notin \Omega_{0}$, then for each x_{0} satisfying $F\left(x_{0}, \omega_{0}\right)=0$ there is an open set U containing x_{0}, an open set V containing ω_{0}, and a C^{1} function $h: V \rightarrow U$ such that for all $\omega \in V, x=h(\omega)$ is the unique element of U satisfying $F(x, \omega)=0$.
3. Let $f: X \rightarrow X$ be continuous. Give an example of a set $X \subseteq \mathbb{R}^{n}$ and a continuous function f, such that f does not have a fixed point and X is:
(a) closed, bounded, but not convex;
(b) convex, closed, but not bounded;
(c) convex, bounded, but not closed.
4. Let A be a nonempty, compact and convex subset of \mathbb{R}^{2} such that if $(x, y) \in A$ for some $x, y \in \mathbb{R}$, then there exists some $z \in \mathbb{R}$ such that $(y, z) \in A$. Prove that $\left(x^{*}, x^{*}\right) \in A$ for some $x^{*} \in \mathbb{R}$. (Hint: Use Kakutani's Fixed Point Theorem)
5. Let A and B be nonempty, convex subsets of \mathbb{R}^{n} with $\operatorname{int} A \neq \varnothing$. Using the Separating Hyperplane Theorem, prove that there exists $p \in \mathbb{R}^{n}$ with $p \neq 0$ such that $\sup p \cdot A \leq \inf p \cdot B$ if and only if $\operatorname{int} A \cap B=\varnothing$. (Hint: You might want to use the result of Theorem 1.11 in de la Fuente, p.234.)
6. Consider the second order linear differential equation given by $y^{\prime \prime}=4 y^{\prime}-8 y$.
(a) Show how this equation can be rewritten as the following first order linear differential equation of two variables:

$$
\bar{y}^{\prime}(t)=A \bar{y}(t)
$$

(b) Verbally describe the solutions of the first order system by analyzing the matrix A.
(c) Solve the system when $y(0)=3$ and $y^{\prime}(0)=7$.

