Econ 204 2011
Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \mathbb{R}
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem
Cardinality (cont.)

Notation: Given a set \(A \), \(2^A \) is the set of all subsets of \(A \). This is the “power set” of \(A \), also denoted \(P(A) \).

Important example of an uncountable set:

Theorem 1 (Cantor). \(2^\mathbb{N} \), the set of all subsets of \(\mathbb{N} \), is not countable.

Proof. Suppose \(2^\mathbb{N} \) is countable. Then there is a bijection \(f: \mathbb{N} \rightarrow 2^\mathbb{N} \). Let \(A_m = f(m) \). We create an infinite matrix, whose

Note: \(2^\mathbb{N} \) is not finite (why not?). The theorem shows \(2^\mathbb{N} \) is not countable. Thus it is uncountable by definition.
\((m, n)^{th}\) entry is 1 if \(n \in A_m\), 0 otherwise:

<table>
<thead>
<tr>
<th></th>
<th>(N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1) = (\emptyset)</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(A_2) = ({1})</td>
<td>1</td>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(2^N) (A_3) = ({1, 2, 3})</td>
<td>1</td>
<td>1</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(A_4) = (N)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(A_5) = (2N)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(0)</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Now, on the main diagonal, change all the 0s to 1s and vice
versa:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 = \emptyset$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$A_2 = {1}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2^N $A_3 = {1,2,3}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$A_4 = \mathbb{N}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$A_5 = 2\mathbb{N}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Let

\[t_{mn} = \begin{cases}
1 & \text{if } n \in A_m \\
0 & \text{if } n \notin A_m
\end{cases} \]

The indicator function of \(A_m \).

Let \(A = \{m \in \mathbb{N} : t_{mm} = 0\} \).

\[m \in A \iff t_{mm} = 0 \iff m \notin A_m \]

\[1 \in A \iff 1 \notin A_1 \text{ so } A \neq A_1 \]

\[2 \in A \iff 2 \notin A_2 \text{ so } A \neq A_2 \]

\[\vdots \]

\[m \in A \iff m \notin A_m \text{ so } A \neq A_m \]

Therefore, \(A \neq f(m) \) for any \(m \), so \(f \) is not onto, contradiction.}

\[\square \]

Cantor diagonal process
Some Additional Facts About Cardinality

Recall we let $|A|$ denote the cardinality of a set A.

- if A is numerically equivalent to $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, then $|A| = n$.

- A and B are numerically equivalent if and only if $|A| = |B|$.

- if $|A| = n$ and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then $|A| < |B|$.
• if A is countable and B is uncountable, then
 \[n < |A| < |B| \quad \forall n \in \mathbb{N} \]

• if $A \subseteq B$ then $|A| \leq |B|$

• if $r : A \rightarrow B$ is 1-1, then $|A| \leq |B|$

• if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable

• if $r : A \rightarrow B$ is 1-1 and B is countable, then A is at most countable
Algebraic Structures: Fields

Definition 1. A field \(\mathcal{F} = (F, +, \cdot) \) is a 3-tuple consisting of a set \(F \) and two binary operations \(+, \cdot : F \times F \to F \) such that

1. **Associativity of \(+ \):**
 \[\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \]

2. **Commutativity of \(+ \):**
 \[\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha \]

3. **Existence of additive identity:**
 \[\exists! 0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha \]
4. Existence of additive inverse:

\[\forall \alpha \in F \ \exists! (-\alpha) \in F \text{ s.t. } \alpha + (-\alpha) = (-\alpha) + \alpha = 0 \]

Define \(\alpha - \beta = \alpha + (-\beta) \)

5. Associativity of \(\cdot \):

\[\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma) \]

6. Commutativity of \(\cdot \):

\[\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha \]

7. Existence of multiplicative identity:

\[\exists! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha \]
8. Existence of multiplicative inverse:

\[\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \exists! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1 \]

Define \(\frac{\alpha}{\beta} = \alpha \beta^{-1} \).

9. Distributivity of multiplication over addition:

\[\forall \alpha, \beta, \gamma \in F, \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \]
Fields

Examples:

- \(\mathbb{R} \): real numbers
- \(\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\} \). \(i^2 = -1 \), so
 \[
 (x+iy)(w+iz) = xw + ixz + iwy + i^2yz = (xw - yz) + i(xz + wy)
 \]
- \(\mathbb{Q} \): \(\mathbb{Q} \subset \mathbb{R}, \mathbb{Q} \neq \mathbb{R} \). \(\mathbb{Q} \) is closed under \(+, \cdot\), taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \(\mathbb{R} \), so \(\mathbb{Q} \) is a field.

\(\forall \) standard +, \cdot

\(\forall \) standard +, \cdot
\[\mathbb{N} \text{ is not a field: no additive identity.} \]

\[\mathbb{Z} \text{ is not a field; no multiplicative inverse for } 2. \]

\[\mathbb{Q}(\sqrt{2}), \text{ the smallest field containing } \mathbb{Q} \cup \{\sqrt{2}\}. \text{ Take } \mathbb{Q}, \text{ add } \sqrt{2}, \text{ and close up under } +, \cdot, \text{ taking additive and multiplicative inverses. One can show} \]

\[\mathbb{Q}(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbb{Q}\} \]

For example,

\[(q + r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2} \]
A finite field: $F_2 = \{0, 1\}$ where we define $+, \cdot$ as follows:

- $0 + 0 = 0$
- $0 \cdot 0 = 0$
- $0 + 1 = 1 + 0 = 1$
- $0 \cdot 1 = 1 \cdot 0 = 0$
- $1 + 1 = 0$
- $1 \cdot 1 = 1$

(Arithmetic mod 2)

$2 \implies 1 = -1$

For $a, b, c \in F$

- $a + (b + c) = (a + b) + c$
- $1 + (0 + 1) = (1 + 0) + 1$
Announcement

* PSI #4

drop part (b)
Vector Spaces

Definition 2. A vector space is a 4-tuple \((V, F, +, \cdot)\) where \(V\) is a set of elements, called vectors, \(F\) is a field, \(+\) is a binary operation on \(V\) called vector addition, and \(\cdot : F \times V \rightarrow V\) is called scalar multiplication, satisfying

1. **Associativity of \(+\):**

\[\forall x, y, z \in V, \quad (x + y) + z = x + (y + z)\]

2. **Commutativity of \(+\):**

\[\forall x, y \in V, \quad x + y = y + x\]
3. Existence of vector additive identity:
\[\exists! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x \]

4. Existence of vector additive inverse:
\[\forall x \in V \ \exists! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0 \]
Define \(x - y \) to be \(x + (-y) \).

5. Distributivity of scalar multiplication over vector addition:
\[\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \]

6. Distributivity of scalar multiplication over scalar addition:
\[\forall \alpha, \beta \in F, x \in V \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \]
7. Associativity of ·:

\[\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x) \]

8. Multiplicative identity:

\[\forall x \in V \quad 1 \cdot x = x \]

(Note that 1 is the multiplicative identity in \(F \); 1 \(\notin \) \(V \))
Vector Spaces

Examples:

1. \mathbb{R}^n over \mathbb{R}.

2. \mathbb{R} is a vector space over \mathbb{Q}:

 (scalar multiplication) $q \cdot r = qr$ (product in \mathbb{R})

 \mathbb{R} is not finite-dimensional over \mathbb{Q}, i.e. \mathbb{R} is not \mathbb{Q}^n for any $n \in \mathbb{N}$.

3. \mathbb{R} is a vector space over \mathbb{R}.
4. $Q(\sqrt{2})$ is a vector space over Q. As a vector space, it is Q^2; as a field, you need to take the funny field multiplication.

5. $Q(\sqrt[3]{2})$, as a vector space over Q, is Q^3.

6. $(F_2)^n$ is a finite vector space over F_2.

7. $C([0,1])$, the space of all continuous real-valued functions on $[0,1]$, is a vector space over R.

 • vector addition:

 $$(f + g)(t) = f(t) + g(t) \quad \forall t \in [0,1]$$

 define the function $f + g$
Note we define the function $f + g$ by specifying what value it takes for each $t \in [0, 1]$.

- scalar multiplication: define the function αf for $\alpha \in \mathbb{R}$, $f \in C([0, 1])$

 $$(\alpha f)(t) = \alpha(f(t))$$

- vector additive identity: 0 is the function which is identically zero: $0(t) = 0$ for all $t \in [0, 1]$.

- vector additive inverse: define $-f$

 $$(-f)(t) = -(f(t))$$
Axioms for \mathbb{R}

1. \mathbb{R} is a field with the usual operations $+$, \cdot, additive identity 0, and multiplicative identity 1.

2. **Order Axiom:** There is a complete ordering \leq, i.e. \leq is reflexive, transitive, antisymmetric ($\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$) with the property that

 \[\forall \alpha, \beta \in \mathbb{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha \] (complete)

 The order is compatible with $+$ and \cdot, i.e.

 \[\forall \alpha, \beta, \gamma \in \mathbb{R} \left\{ \begin{array}{l} \alpha \leq \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha \gamma \leq \beta \gamma \end{array} \right. \]

 $\alpha \geq \beta$ means $\beta \leq \alpha$. $\alpha < \beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta$.
Completeness Axiom

3. **Completeness Axiom:** Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$ satisfy

$$\ell \leq h \quad \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbb{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

The Completeness Axiom differentiates \mathbb{R} from \mathbb{Q}: \mathbb{Q} satisfies all the axioms for \mathbb{R} except the Completeness Axiom. (Why not??)
Sups, Infs, and the Supremum Property

Definition 3. Suppose $X \subseteq \mathbb{R}$. We say u is an upper bound for X if

$$x \leq u \ \forall x \in X$$

and ℓ is a lower bound for X if

$$\ell \leq x \ \forall x \in X$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

, if X is bounded above, it has many upper bounds.
Definition 4. Suppose X is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

$$\sup X \geq x \quad \forall x \in X \quad (\text{sup } X \text{ is an upper bound})$$

$$\forall y < \sup X \exists x \in X \text{ s.t. } x > y \quad (\text{there is no smaller upper bound})$$

Analogously, suppose X is bounded below. The infimum of X, written $\inf X$, is the greatest lower bound for X, i.e. $\inf X$ satisfies

$$\inf X \leq x \quad \forall x \in X \quad (\text{inf } X \text{ is a lower bound})$$

$$\forall y > \inf X \exists x \in X \text{ s.t. } x < y \quad (\text{there is no greater lower bound})$$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.
The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: $\sup X$ need not be an element of X. For example, $\sup(0, 1) = 1 \notin (0, 1)$.
The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let \(X \subseteq \mathbb{R} \) be a nonempty set that is bounded above. Let \(U \) be the set of all upper bounds for \(X \). Since \(X \) is bounded above, \(U \neq \emptyset \). If \(x \in X \) and \(u \in U \), \(x \leq u \) since \(u \) is an upper bound for \(X \). So

\[
x \leq u \ \forall x \in X, u \in U
\]

By the Completeness Axiom,

\[
\exists \alpha \in \mathbb{R} \ s.t. \ x \leq \alpha \leq u \ \forall x \in X, u \in U
\]

\(\alpha \) is an upper bound for \(X \), and it is less than or equal to every other upper bound for \(X \), so it is the least upper bound for \(X \),
so $\sup X = \alpha \in \mathbb{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$, and

$$\ell \leq h \ \forall \ell \in L, h \in H$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$\ell \leq \alpha \ \forall \ell \in L$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$\ell \leq \alpha \leq h \ \forall \ell \in L, h \in H$$

so the Completeness Axiom holds.
Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

\[\forall x, y \in \mathbb{R}, y > 0 \ \exists n \in \mathbb{N} \ s.t. \ ny = (y + \cdots + y) > x \]

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \(\square\)
Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and $f(a) < d < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = d$.

Proof. Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let

$$B = \{ x \in [a, b] : f(x) < d \}$$

$a \in B$, so $B \neq \emptyset$; $B \subseteq [a, b]$, so B is bounded above. By the Supremum Property, $\sup B$ exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a, b]$, so $c \leq b$. Therefore, $c \in [a, b]$.

15
\[f(a) < d < f(b) \]

\[B = \{ x \in [a, b] : f(x) < d \} \]

\[c = \sup B \]

Claim: \(f(c) = d \)
We claim that \(f(c) = d \). If not, suppose \(f(c) < d \). Then since \(f(b) > d, c \neq b \), so \(c < b \). Let \(\varepsilon = \frac{d-f(c)}{2} > 0 \). Since \(f \) is continuous at \(c \), there exists \(\delta > 0 \) such that

\[
|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon
\]

\[
\Rightarrow \quad f(x) < f(c) + \varepsilon = f(c) + \frac{d-f(c)}{2}
\]

\[
= \frac{f(c)+d}{2} < \frac{d+d}{2} = d
\]

so \((c, c + \delta) \subseteq B\), so \(c \neq \sup B\), contradiction.

\(\exists x \in [a, b] : f(x) < d \)
\[f(a) \]

\[f(b) \]

\[d \]

\[f(c) \]

\[x \in B \]

\[x \leq b \Rightarrow f(x) < d \]

\[\Rightarrow c \neq \sup B \]

\[2 \delta \]

\[2 \varepsilon \]
Suppose $f(c) > d$. Then since $f(a) < d$, $a \neq c$, so $c > a$. Let
$\varepsilon = \frac{f(c) - d}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$
|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon \iff \begin{cases}
\varepsilon \\
\varepsilon
\end{cases}
$$

$$
\frac{f(c) - d}{2} < \varepsilon \implies f(x) > f(c) - \varepsilon
$$

$$
f(c) - \frac{f(c) - d}{2} = \frac{f(c) + d}{2}
$$

$$
> \frac{d + d}{2}
$$

So $\frac{d + d}{2} = d$. Therefore

$$
(c - \delta, c + \delta) \cap B = \emptyset.
$$

So either there exists $x \in B$ with $x \geq c + \delta$ (in which case c is not an upper bound for B) or $c - \delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \neq \sup B$, contradiction.
\[f(c) > d \Rightarrow \exists \delta > 0 \text{ s.t. } x \in (c-\delta, c+\delta) \Rightarrow f(x) > d \]

\[\Rightarrow (c-\delta, c+\delta) \cap B = \emptyset \]

\[\Rightarrow c = \sup B \]
Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, $f(c) = d$. Since $f(a) < d$ and $f(b) > d$, $a \neq c \neq b$, so $c \in (a, b)$. \qed
Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0, 2]$. f is continuous (Why?). $f(0) = 0 < 2$ and $f(2) = 4 > 2$, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that $f(c) = 2$, i.e. such that $c^2 = 2$. \qed