Econ 204 2011
Lecture 3

Outline

1. Metric Spaces and Normed Spaces
2. Convergence of Sequences in Metric Spaces
3. Sequences in \(\mathbb{R} \) and \(\mathbb{R}^n \)
Metric Spaces and Metrics

Generalize distance and length notions in \mathbb{R}^n

Definition 1. A metric space is a pair (X, d), where X is a set and $d : X \times X \to \mathbb{R}_+$ a function satisfying

\[\mathbb{R}_+ := \{ r \in \mathbb{R} : r \geq 0 \} \]

1. $d(x, y) \geq 0$, $d(x, y) = 0 \Leftrightarrow x = y \ \forall x, y \in X$

2. $d(x, y) = d(y, x) \ \forall x, y \in X$

3. triangle inequality:

\[d(x, z) \leq d(x, y) + d(y, z) \ \forall x, y, z \in X \]
A function $d : X \times X \to \mathbb{R}_+$ satisfying 1-3 above is called a metric on X.

A metric gives a notion of distance between elements of X.
Normed Spaces and Norms

Definition 2. Let V be a vector space over \mathbb{R}. A norm on V is a function $\| \cdot \| : V \rightarrow \mathbb{R}_+$ satisfying

1. $\|x\| \geq 0 \ \forall x \in V$

2. $\|x\| = 0 \iff x = 0 \ \forall x \in V$

3. triangle inequality:

 $$\|x + y\| \leq \|x\| + \|y\| \ \forall x, y \in V$$
A normed vector space is a vector space over \mathbb{R} equipped with a norm.

A norm gives a notion of length of a vector in V.

$$4. \, \|\alpha x\| = |\alpha||x| \quad \forall \alpha \in \mathbb{R}, x \in V$$
Normed Spaces and Norms

Example: In \mathbb{R}^n, standard notion of distance between two vectors x and y measures length of difference $x - y$, i.e.,

$$d(x, y) = \|x - y\| = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}.$$

In an abstract normed vector space, the norm can be used analogously to define a notion of distance.

Theorem 1. Let $(V, \| \cdot \|)$ be a normed vector space. Let $d : V \times V \Rightarrow \mathbb{R}_+$ be defined by

$$d(v, w) = \|v - w\|$$

Then (V, d) is a metric space.
Proof. We must verify that d satisfies all the properties of a metric.

1. Let $v, w \in V$. Then by definition, $d(v, w) = \|v - w\| \geq 0$ (why?), and

$$d(v, w) = 0 \iff \|v - w\| = 0 \iff v - w = 0\text{ additive id in } V \iff (v + (-w)) + w = w \iff v + ((-w) + w) = w \iff v + 0 = w \iff v = w$$

2. First, note that for any $x \in V$, $0 \cdot x = (0 + 0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$. Then $0 = 0 \cdot x = (1 - 1) \cdot x = 1 \cdot x + (-1) \cdot x = 0 \text{ add id in } V$
\[x + (-1) \cdot x, \text{ so we have } (-1) \cdot x = (-x). \text{ Then let } v, w \in V. \]

\[
d(v, w) = \|v - w\| \\
= | -1| \|v - w\| \\
= \|(-1)(v + (-w))\| \\
= \|(-1)v + (-1)(-w)\| \\
= \| - v + w\| \\
= \|w + (-v)\| \\
= \|w - v\| \\
= d(w, v)
\]
Let $u, w, v \in V$.

$$d(u, w) = \|u - w\| \leq 0$$
$$= \|u + (v - v) - w\|$$
$$= \|u - v + (v - w)\|$$
$$\leq \|u - v\| + \|v - w\|$$
$$= d(u, v) + d(v, w)$$

Thus d is a metric on V.

\[\square\]
Normed Spaces and Norms

Examples

• \mathbb{E}^n: n-dimensional Euclidean space.

$$V = \mathbb{R}^n, \quad \|x\|_2 = |x| = \sqrt{\sum_{i=1}^{n} (x_i)^2}$$

$$x = (x_1, \ldots, x_n)$$

• $V = \mathbb{R}^n, \quad \|x\|_1 = \sum_{i=1}^{n} |x_i|$ (the “taxi cab” norm or L^1 norm)

• $V = \mathbb{R}^n, \quad \|x\|_{\infty} = \max\{|x_1|, \ldots, |x_n|\}$ (the maximum norm, or sup norm, or L^∞ norm)
$C([0,1]) : f: [0,1] \rightarrow \mathbb{R}$, continuous

\forall
- $C([0,1])$, $\|f\|_{\infty} = \sup \{|f(t)| : t \in [0,1]\}$

\forall
- $C([0,1])$, $\|f\|_{2} = \sqrt{\int_{0}^{1} (f(t))^2 \, dt}$

\forall
- $C([0,1])$, $\|f\|_{1} = \int_{0}^{1} |f(t)| \, dt$
Normed Spaces and Norms

Theorem 2 (Cauchy-Schwarz Inequality).

If \(v, w \in \mathbb{R}^n \), then

\[
\left(\sum_{i=1}^{n} v_i w_i \right)^2 \leq \left(\sum_{i=1}^{n} v_i^2 \right) \left(\sum_{i=1}^{n} w_i^2 \right)
\]

\[
|v \cdot w|^2 \leq |v|^2 |w|^2 = \|v\|_2 \|w\|_2
\]

\[
|v \cdot w| \leq |v| \|w\| = \|v\|_2 \|w\|_2
\]

- Learn some proof
- Triangle inequality of standard norm \(\| \cdot \|_2 \) in the follows from C.-S. - nice exercise
Equivalent Norms

A given vector space may have many different norms: if $\| \cdot \|$ is a norm on a vector space V, so are $2\| \cdot \|$ and $3\| \cdot \|$ and $k\| \cdot \|$ for any $k > 0$.

Less trivially, \mathbb{R}^n supports many different norms as in the examples above. Different norms on a given vector space yield different geometric properties.
Look at \(\{ x \in \mathbb{R}^2 : \|x\| = 1 \} \) for different choices of \(\|\cdot\| \).

- **Standard norm**
 \(\{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \} \)

- **Sup norm**
 \(\{ x \in \mathbb{R}^2 : \max(\|x_1\|, \|x_2\|) = 1 \} \)

- **L^1 norm**
 \(\{ x \in \mathbb{R}^2 : |x_1| + |x_2| = 1 \} \)

Unit balls around 0 in different norms.
Equivalent Norms

Definition 3. Two norms $\| \cdot \|$ and $\| \cdot \|^*$ on the same vector space V are said to be Lipschitz-equivalent (or equivalent) if

$\exists m, M > 0$ s.t. $\forall x \in V, \quad m\|x\| \leq \|x\|^* \leq M\|x\|

Equivalently, $\exists m, M > 0$ s.t. $\forall x \in V, x \neq 0, \quad m \leq \frac{\|x\|^*}{\|x\|} \leq M$

\[\small{\textbf{This is an equivalence relation (exercise)}} \]
Equivalent Norms

If two norms are equivalent, then they define the same notions of convergence and continuity. For topological purposes, equivalent norms are indistinguishable.

For example, suppose two norms \(\| \cdot \| \) and \(\| \cdot \|^{*} \) on the vector space \(V \) are equivalent, and fix \(x \in V \). Let \(\varepsilon > 0 \)

\[
B_{\varepsilon}(x, \| \cdot \|) = \{ y \in V : \| x - y \| < \varepsilon \}
\]

\[
B_{\varepsilon}(x, \| \cdot \|^{*}) = \{ y \in V : \| x - y \|^{*} < \varepsilon \}
\]

Then for any \(\varepsilon > 0 \),

\[
B_{\varepsilon}(x, \| \cdot \|) \subseteq B_{\varepsilon}(x, \| \cdot \|^{*}) \subseteq B_{\varepsilon}(x, \| \cdot \|)
\]
norms on \mathbb{R}^n are equivalent
Equivalent Norms

In \mathbb{R}^n (or any finite-dimensional normed vector space), all norms are equivalent. Roughly, up to a difference in scaling, for topological purposes there is a unique norm in \mathbb{R}^n.

Theorem 3. All norms on \mathbb{R}^n are equivalent.

Infinite-dimensional spaces support norms that are not equivalent. For example, on $C([0,1])$, let f_n be the function

$$f_n(t) = \begin{cases} 1 - nt & \text{if } t \in [0, \frac{1}{n}] \\ 0 & \text{if } t \in (\frac{1}{n}, 1] \end{cases}$$

Then

$$\frac{\|f_n\|_1}{\|f_n\|_\infty} = \frac{1}{2n} = \frac{1}{2n} \to 0$$

$$\frac{1}{2n} = \|f_n\|_1 = \int_{0}^{1} |f_n(t)| \, dt = \int_{0}^{\frac{1}{n}} (1-nt) \, dt$$
Definition 4. In a metric space \((X, d)\), a subset \(S \subseteq X\) is bounded if \(\exists x \in X, \beta \in \mathbb{R}\) such that \(\forall s \in S, d(s, x) \leq \beta\).

In a metric space \((X, d)\), define

\[B_\varepsilon(x) = \{ y \in X : d(y, x) < \varepsilon \} \]

= "open ball with center \(x\) and radius \(\varepsilon\)

\[B_\varepsilon[x] = \{ y \in X : d(y, x) \leq \varepsilon \} \]

= "closed ball with center \(x\) and radius \(\varepsilon\)"
Metrics and Sets

We can use the metric d to define a generalization of "radius". In a metric space (X, d), define the \textit{diameter} of a subset $S \subseteq X$ by

$$\text{diam } (S) = \sup \{d(s, s') : s, s' \in S\}$$

Similarly, we can define the distance from a point to a set, and distance between sets, as follows:

$$d(A, x) = \inf_{a \in A} d(a, x)$$
$$d(A, B) = \inf_{a \in A} d(B, a)$$
$$= \inf \{d(a, b) : a \in A, b \in B\}$$

But $d(A, B)$ is \textbf{not} a metric. (why ??)
Convergence of Sequences

Definition 5. Let \((X, d)\) be a metric space. A sequence \(\{x_n\}\) converges to \(x\) (written \(x_n \to x\) or \(\lim_{n \to \infty} x_n = x\)) if

\[
\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ s.t. \ n > N(\varepsilon) \implies d(x_n, x) < \varepsilon
\]

Notice that this is exactly the same as the definition of convergence of a sequence of real numbers, except we replace the standard measure of distance \(|\cdot|\) in \(\mathbb{R}\) by the general metric \(d\).
\[\exists \epsilon > 0 \]
\[B_{\epsilon}(x) \]
\[\exists N(\epsilon) \text{ s.t. } \]
\[\forall n \geq N(\epsilon) \Rightarrow x_n \in B_{\epsilon}(x) \]
\[\{x_n\} \]
Uniqueness of Limits

Theorem 4 (Uniqueness of Limits). *In a metric space (X, d), if $x_n \to x$ and $x_n \to x'$, then $x = x'$."

Proof. Suppose $\{x_n\}$ is a sequence in X, $x_n \to x$, $x_n \to x'$, $x \neq x'$.
Since $x \neq x'$, $d(x, x') > 0$. Let

$$
\varepsilon = \frac{d(x, x')}{2}
$$

Then there exist $N(\varepsilon)$ and $N'(\varepsilon)$ such that

$$
n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon \quad \text{and} \quad x_n \to x
$$

$$
n > N'(\varepsilon) \Rightarrow d(x_n, x') < \varepsilon \quad \text{and} \quad x_n \to x'
$$

Choose

$$
n > \max\{N(\varepsilon), N'(\varepsilon)\}
$$
Then

\[d(x, x') \leq d(x, x_n) + d(x_n, x') \]
\[< \varepsilon + \varepsilon \]
\[= 2\varepsilon \]
\[= d(x, x') \]

\[d(x, x') < d(x, x') \]

a contradiction.
\[d(x, x') = \frac{d(x, x')}{2} \]
Cluster Points

Definition 6. An element \(c \) is a cluster point of a sequence \(\{x_n\} \) in a metric space \((X, d)\) if \(\forall \varepsilon > 0, \{n : x_n \in B_\varepsilon(c)\} \) is an infinite set. Equivalently,

\[
\forall \varepsilon > 0, N \in \mathbb{N} \ \exists n > N \text{ s.t. } x_n \in B_\varepsilon(c)
\]

\(\{x_n\} \) arbitrarily close to \(c \) infinitely often

Example:

\[x_n = \begin{cases}
1 - \frac{1}{n} & \text{if } n \text{ even} \\
\frac{1}{n} & \text{if } n \text{ odd}
\end{cases} \]

For \(n \) large and odd, \(x_n \) is close to zero; for \(n \) large and even, \(x_n \) is close to one. The sequence does not converge; the set of cluster points is \(\{0, 1\} \).
Subsequences

If \(\{x_n\} \) is a sequence and \(n_1 < n_2 < n_3 < \cdots \) then \(\{x_{n_k}\} \) is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence, in the same order.

Example: \(x_n = \frac{1}{n} \), so \(\{x_n\} = (1, \frac{1}{2}, \frac{1}{3}, \ldots) \). If \(n_k = 2k \), then \(\{x_{n_k}\} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots) \).
Cluster Points and Subsequences

Theorem 5 (2.4 in De La Fuente, plus ...). Let \((X, d)\) be a metric space, \(c \in X\), and \(\{x_n\}\) a sequence in \(X\). Then \(c\) is a cluster point of \(\{x_n\}\) if and only if there is a subsequence \(\{x_{n_k}\}\) such that \(\lim_{k \to \infty} x_{n_k} = c\).

Proof. Suppose \(c\) is a cluster point of \(\{x_n\}\). We inductively construct a subsequence that converges to \(c\). For \(k = 1\), \(\{n : x_n \in B_1(c)\}\) is infinite, so nonempty; let

\[
n_1 = \min\{n : x_n \in B_1(c)\}
\]

Now, suppose we have chosen \(n_1 < n_2 < \cdots < n_k\) such that

\[
x_{n_j} \in B_{\frac{1}{j}}(c) \text{ for } j = 1, \ldots, k
\]
\{n : x_n \in B^{1 \frac{1}{k+1}}_1(c)\} is infinite, so it contains at least one element bigger than \(n_k\), so let

\[n_{k+1} = \min \left\{ n : n > n_k, x_n \in B^{1 \frac{1}{k+1}}_1(c) \right\} \]

Thus, we have chosen \(n_1 < n_2 < \cdots < n_k < n_{k+1}\) such that

\[x_{n_j} \in B^{1 \frac{1}{j}}_1(c) \text{ for } j = 1, \ldots, k, k+1 \]

Thus, by induction, we obtain a subsequence \(\{x_{n_k}\}\) such that

\[x_{n_k} \in B^{1 \frac{1}{k}}_1(c) \]

Given any \(\varepsilon > 0\), by the Archimedean property, there exists \(N(\varepsilon) > 1/\varepsilon\). (why?)

\[k > N(\varepsilon) \Rightarrow x_{n_k} \in B^{1 \frac{1}{k}}_1(c) \quad \frac{1}{k} < \varepsilon \]

\[\Rightarrow x_{n_k} \in B_\varepsilon(c) \]
so

\[x_{n_k} \to c \text{ as } k \to \infty \]

Conversely, suppose that there is a subsequence \(\{x_{n_k}\} \) converging to \(c \). Given any \(\varepsilon > 0 \), there exists \(K \in \mathbb{N} \) such that

\[k > K \Rightarrow d(x_{n_k}, c) < \varepsilon \Rightarrow x_{n_k} \in B_{\varepsilon}(c) \]

Therefore,

\[\{n : x_n \in B_{\varepsilon}(c)\} \supseteq \{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\} \]

Since \(n_{K+1} < n_{K+2} < n_{K+3} < \cdots \), this set is infinite, so \(c \) is a cluster point of \(\{x_n\} \). \qed
Sequences in \mathbb{R} and \mathbb{R}^m

Definition 7. A sequence of real numbers $\{x_n\}$ is increasing (decreasing) if $x_{n+1} \geq x_n$ ($x_{n+1} \leq x_n$) for all n.

Definition 8. If $\{x_n\}$ is a sequence of real numbers, $\{x_n\}$ tends to infinity (written $x_n \to \infty$ or $\lim x_n = \infty$) if

$$\forall K \in \mathbb{R} \exists N(K) \text{ s.t. } n > N(K) \Rightarrow x_n > K$$

Similarly define $x_n \to -\infty$ or $\lim x_n = -\infty$.
Increasing and Decreasing Sequences

Theorem 6 (Theorem 3.1’). Let \(\{x_n\} \) be an increasing (decreasing) sequence of real numbers. Then

\[
\lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\}
\]

\[
(\lim_{n \to \infty} x_n = \inf \{x_n : n \in \mathbb{N}\})
\]

In particular, the limit exists.

Read diff proof, think about how to handle the unbounded case
Lim Sups and Lim Infs

Consider a sequence \(\{x_n\} \) of real numbers. Let

\[
\alpha_n = \sup\{x_k : k \geq n\} = \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\}
\]

\[
\beta_n = \inf\{x_k : k \geq n\} = \inf\{x_n, x_{n+1}, x_{n+2}, \ldots\}
\]

Either \(\alpha_n = +\infty \) for all \(n \), or \(\alpha_n \in \mathbb{R} \) and \(\alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \cdots \).

Either \(\beta_n = -\infty \) for all \(n \), or \(\beta_n \in \mathbb{R} \) and \(\beta_1 \leq \beta_2 \leq \beta_3 \leq \cdots \).
Definition 9.

\[
\limsup_{n \to \infty} x_n = \begin{cases}
 +\infty & \text{if } \alpha_n = +\infty \text{ for all } n \\
 \lim \alpha_n & \text{otherwise.}
\end{cases}
\]

\[
\liminf_{n \to \infty} x_n = \begin{cases}
 -\infty & \text{if } \beta_n = -\infty \text{ for all } n \\
 \lim \beta_n & \text{otherwise.}
\end{cases}
\]

Theorem 7. Let \(\{x_n\} \) be a sequence of real numbers. Then

\[
\lim_{n \to \infty} x_n = \gamma \in \mathbb{R} \cup \{-\infty, \infty\} \\
\iff \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \gamma
\]
Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.
Proof. Let

\[S = \{ s \in \mathbb{N} : x_s > x_n \ \forall n > s \} \]

Either \(S \) is infinite, or \(S \) is finite.

If \(S \) is infinite, let

\[
\begin{align*}
 n_1 &= \min S & \text{first time} \\
 n_2 &= \min (S \setminus \{n_1\}) & \text{next time} \\
 n_3 &= \min (S \setminus \{n_1, n_2\}) & \text{next next time} \\
 & \vdots \\
 n_{k+1} &= \min (S \setminus \{n_1, n_2, \ldots, n_k\})
\end{align*}
\]
Then \(n_1 < n_2 < n_3 < \cdots \).

\[
\begin{align*}
\quad & x_{n_1} > x_{n_2} \quad \text{since } n_1 \in S \text{ and } n_2 > n_1 \\
\quad & x_{n_2} > x_{n_3} \quad \text{since } n_2 \in S \text{ and } n_3 > n_2 \\
\quad & \vdots \\
\quad & x_{n_k} > x_{n_{k+1}} \quad \text{since } n_k \in S \text{ and } n_{k+1} > n_k \\
\quad & \vdots
\end{align*}
\]

so \(\{x_{n_k}\} \) is a strictly decreasing subsequence of \(\{x_n\} \).

If \(S \) is finite and nonempty, let \(n_1 = (\max S) + 1 \); if \(S = \emptyset \), let \(n_1 = 1 \). Then

\[
\begin{align*}
\quad & n_1 \notin S \quad \text{so } \exists n_2 > n_1 \text{ s.t. } x_{n_2} \geq x_{n_1} \\
\quad & n_2 \notin S \quad \text{so } \exists n_3 > n_2 \text{ s.t. } x_{n_3} \geq x_{n_2} \\
\quad & \vdots \\
\quad & n_k \notin S \quad \text{so } \exists n_{k+1} > n_k \text{ s.t. } x_{n_{k+1}} \geq x_{n_k} \\
\quad & \vdots
\end{align*}
\]
so $\{x_{n_k}\}$ is a (weakly) increasing subsequence of $\{x_n\}$.

\qed
Bolzano-Weierstrass Theorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). *Every bounded sequence of real numbers contains a convergent subsequence.*

Proof. Let \(\{x_n\} \) be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence \(\{x_{n_k}\} \). If \(\{x_{n_k}\} \) is increasing, then by Theorem 3.1',

\[
\lim x_{n_k} = \sup \{x_{n_k} : k \in \mathbb{N}\} \leq \sup \{x_n : n \in \mathbb{N}\} < \infty
\]

since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges. \(\square \)