1. (a) Prove that \(y = h^3 \) is both \(o(|h|^2) \) as \(h \to 0 \) and \(O(|h|^3) \) as \(h \to 0 \).

 (b) Prove that \(y = \sin(h) \) is not \(o(|h|) \) as \(h \to 0 \) but is \(O(|h|) \) as \(h \to 0 \). (You can use the fact that \(|\sin(h)| \leq |h| \)).

2. (a) Prove that the following identity holds for \(-1 < x \leq 1\):

 \[
 \ln(x + 1) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.
 \]

 (b) Find the second-order Taylor expansion of:

 \[
 f(x, y) = -x^2 + 2xy + 3y^2 - 6x - 2y - 4
 \]

 around \((x, y) = (-\pi/4, \ln 42) \).

 (c) Find the second-order Taylor expansion of \(g(x, y) = y^x \) around \((x, y) = (1, 1) \).

3. Define \(f : \mathbb{R}^3 \to \mathbb{R} \) by

 \[
 f(x, y, z) = x^2 y + e^x + z.
 \]

 Show that there exists a differentiable function \(g \) in some neighborhood of \((1, -1) \) in \(\mathbb{R}^2 \), such that \(g(1, -1) = 0 \) and

 \[
 f(g(y, z), y, z) = 0.
 \]

 Compute \(Dg(1, -1) \).

4. Let \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(F(x, y) = (e^y \cos(x), e^y \sin(x)) \).

 (a) Show that \(F \) satisfies the prerequisites of the Inverse Function Theorem for all \((x, y) \in \mathbb{R}^2 \) (and is therefore locally injective everywhere) but \(F \) is not globally injective.
(b) Compute the Jacobian of the local inverse of F and evaluate it at $F(\frac{\pi}{3}, 0)$.

(c) Find an explicit formula for the continuous inverse of F mapping a neighborhood of $F(\frac{\pi}{3}, 0)$ into a neighborhood of $(\frac{\pi}{3}, 0)$ and verify that its Jacobian at $F(\frac{\pi}{3}, 0)$ equals the one you calculated in part (b). (You might want to look up a few basic trigonometric facts.)

5. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable on the interval (a, b), and let $a < c < d < b$.

(a) Suppose that $f'(c) < 0 < f'(d)$. Prove that the restriction of f to $[c, d]$ does not achieve a global minimum at c or at d.

(b) Again suppose that $f'(c) < 0 < f'(d)$. Prove that there exists some $p \in (c, d)$ such that $f'(p) = 0$. (In order to receive full credit, please prove any claims you make about the derivative at extremal points.)

(c) Now suppose that $f'(c) < \alpha < f'(d)$. Prove that there exists some $p \in (c, d)$ such that $f'(p) = \alpha$.

6. Let $g : \mathbb{R} \to \mathbb{R}$ be C^1. Prove that there exists $\varepsilon > 0$ such that the function $f : [1, 2] \to \mathbb{R}$ given by

$$f(x) = x^3 - x^2 + \varepsilon g(x)$$

is injective. (Hint: You probably want to start by using the Extreme-Value Theorem appropriately.)