
Economics 204 Summer/Fall 2010
Final Exam

Answer all of the questions below. Be as complete, correct, and concise as possible. There are
6 questions for a total of 165 points possible; point values for each problem are in parentheses.
For questions with subparts, each subpart is worth the same number of points. You have
180 minutes to complete the exam. Use the points as a guide to allocating your time. You
may use any result from class with appropriate references unless you are specifically being
asked to prove it.

1. (15) Define or state each of the following.

(a) Brouwer’s Fixed Point Theorem

(b) contraction mapping

(c) metric

Solution: See notes.

2. (30) Prove that for every n ∈ N,

n∑

k=1

k3 =
1

4
(n(n + 1))2

Solution: For n = 1,

1 = 13 =
1

4
(1(1 + 1))2 =

1

4
(22) =

1

4
4 = 1

For the induction hypothesis, suppose

n−1∑

k=1

k3 =
1

4
((n − 1)n)2 for some n − 1, n ≥ 2

Now consider n:

n∑

k=1

k3 =
n−1∑

k=1

k3 + n3

=
1

4
((n − 1)n)

2
+ n3 by the induction hypothesis

=
1

4
(n2 − n)(n2 − n) + n3

=
1

4
(n4 − n3 − n3 + n2) + n3

=
1

4
(n4 + 2n3 + n2)

1



=
1

4
(n2(n2 + 2n + 1))

=
1

4
(n2(n + 1)2)

=
1

4
(n(n + 1))2

By induction, the claim holds for every n ∈ N.

3. (30) Let X and Y be vector spaces over the same field F and T ∈ L(X, Y ), that is,
T : X → Y is a linear transformation.

(a) Show that kerT is a vector subspace of X and that Im T is a vector subspace of
Y .

Solution: Let x1, x2 ∈ kerT , and α, β ∈ F . Then

T (αx1 + βx2) = αT (x1) + βT (x2) linearity of T

= α0 + β0 since x1, x2 ∈ kerT

= 0 + 0 = 0

So αx1 + βx2 ∈ kerT . Thus kerT is a vector subspace of X. Similarly, let
y1, y2 ∈ ImT and α, β ∈ F . Since y1, y2 ∈ ImT , there exist x1, x2 ∈ X such that
T (x1) = y1 and T (x2) = y2. Since X is a vector space, αx1 + βx2 ∈ X. Then

T (αx1 + βx2) = αT (x1) + βT (x2) linearity of T

= αy1 + βy2

which shows that αy1 + βy2 ∈ Im T . Thus ImT is a vector subspace of Y .

(b) Suppose dim X = dim Y and kerT = {0}. Show that if V = {v1, . . . , vn} is a
basis for X, then {T (v1), . . . , T (vn)} is a basis for Y .

Solution: First note that dim X = n, since V is a basis for X and |V | = n.
Since dimY = dim X, dimY = n as well. Then it suffices to show that W =
{T (v1), . . . , T (vn)} is a linearly independent set, since |W | = n. To that end,
suppose there exist α1, . . . , αn ∈ F such that

0 =
n∑

i=1

αiT (vi)

⇒ 0 =
n∑

i=1

αiT (vi) = T (
n∑

i=1

αivi) linearity of T

Thus
∑

n

i=1 αivi ∈ kerT = {0}, so
∑

n

i=1 αivi = 0. Since {v1, . . . , vn} are linearly
independent, αi = 0 for each i. Thus {T (v1), . . . , T (vn)} are linearly independent.
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4. (30) Consider R with the usual metric.

(a) Let C = { n

n2+1
: n = 0, 1, 2, 3, . . .}. Show directly from the definition that C is

compact.

(Note: An otherwise correct answer that does not use the open cover definition
will receive 10 points.)

Solution: Let {Uλ : λ ∈ Λ} be an open cover of C . Then there exists λ0 ∈ Λ
such that 0 = 0

02+1
∈ Uλ0

. Since Uλ0
is an open set containing 0, there exists ε > 0

such that Bε(0) ⊆ Uλ0
. Notice that the sequence { n

n2+1
, n = 1, 2, 3, . . .} converges

to 0 as n → ∞, so there exists N such that for all n > N , n

n2+1
∈ Bε(0) ⊆ Uλ0

.
By definition of open cover, there exist λ1, . . . , λN ∈ Λ such that n

n2+1
∈ Uλn

for
n = 1, . . . , N . Thus

C ⊆ Uλ0
∪ Uλ1

∪ · · · ∪ UλN

So {Uλ0
, Uλ1

, . . . , UλN
} is a finite subcover of {Uλ : λ ∈ Λ}. Since the original

open cover was arbitrary, C is compact.

Here is an argument for 10 points. Notice that this argument is actually harder.
Since C ⊆ [0, 1] and [0, 1] is compact, it suffices to show that C is closed. Let
{xn} be a sequence of elements of C , and suppose xn → x ∈ [0, 1]. Since xn ∈ C
for each n, either {xn} is eventually constant or xn → 0. If {xn} is eventually
constant, then x = k

k2+1
for some k = 0, 1, 2, . . ., so x ∈ C . If x = 0, then x ∈ C .

Thus C is closed.

(b) Let C1 = C \ {0} = { n

n2+1
: n = 1, 2, 3, . . .}. Is C1 compact? Justify your answer.

(Note: Answers with no justification will receive no points.)

Solution: No. Notice that the sequence {xn = n

n2+1
, n = 1, 2, 3, . . .} converges to

0 as n → ∞, so any subsequence of {xn} converges to 0 as well. But since 0 6∈ C0

and {xn} ⊆ C0, {xn} is a sequence in C0 with no subsequence that converges to
an element of C0. A set in R is compact if and only if it is sequentially compact,
thus C0 is not compact.

Alternatively, note that xn → 0, {xn} ⊆ C0 but 0 6∈ C0 implies C0 is not closed.
Every compact subset of R must be closed, hence C0 is not compact.

5. (30) Let f : A → Rm be continuous, where A ⊆ Rn is open and convex. Show that if
f is differentiable on A and ‖dfx‖ is bounded on A, then f is uniformly continuous on
A.

Solution: Let M > 0 be a bound on ‖dfx‖ for x ∈ A, that is, ‖dfx‖ ≤ M for every
x ∈ A. Fix ε > 0. Set δ = ε/M , and let x, y ∈ A with ‖x − y‖ < δ. Since A is convex
and x, y ∈ A, `(x, y) = {z : z = αx + (1 − α)y, α ∈ [0, 1]} ⊆ A. By the Mean Value
Theorem, there exists z ∈ `(x, y) such that

‖f(x) − f(y)‖ ≤ ‖dfz‖‖x − y‖
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Then

‖f(x) − f(y)‖ ≤ ‖dfz‖‖x− y‖

≤ M‖x − y‖

< Mδ

= ε

Hence f is uniformly continuous on A.

6. (30) Suppose Ψ1, Ψ2 : X → 2Y are closed-valued, upper hemicontinuous correspon-
dences, where X ⊆ Rn, Y ⊆ Rm for some n, m. Suppose that Ψ1(x) ∩ Ψ2(x) 6= ∅ for
each x ∈ X. Show that Ψ1 ∩ Ψ2 is upper hemicontinuous, where Ψ1 ∩ Ψ2 : X → 2Y is
defined by

(Ψ1 ∩ Ψ2)(x) = Ψ1(x) ∩ Ψ2(x) ∀x ∈ X

(Note: For full credit, the answer will have to directly use the definition of upper
hemicontinuity. An otherwise correct answer that uses alternative characterizations
of upper hemicontinuity will receive 50% credit, provided any necessary additional
assumptions are clearly stated.)

Solution: Fix x ∈ X and let O ⊆ Rm be an open set such that

Ψ1(x) ∩ Ψ2(x) ⊆ O

Since Ψ1(x), Ψ2(x) are closed sets, Ψ2(x) \O is closed, and

Ψ1(x) ∩ (Ψ2(x) \ O) = ∅

Then there exist open sets V1, V2 ⊆ Rm such that V1 ∩ V2 = ∅ with

Ψ1(x) ⊆ V1, Ψ2(x) \ O ⊆ V2

Thus Ψ2(x) ⊆ O ∪ V2, and O ∪ V2 is an open set. Since Ψ1 and Ψ2 are upper hemicon-
tinuous, there exist open sets U1, U2 ⊆ X with x ∈ U1, x ∈ U2 such that

Ψ1(x
′) ⊆ V1 ∀x′ ∈ U1 and Ψ2(x

′) ⊆ O ∪ V2 ∀x′ ∈ U2

Notice that x ∈ U1 ∩ U2, so U1 ∩ U2 6= ∅, and U1 ∩ U2 is open. Let x̂ ∈ U1 ∩ U2. Then
Ψ1(x̂) ⊆ V1, Ψ2(x̂) ⊆ O ∪ V2, and Ψ1(x̂) ∩ Ψ2(x̂) 6= ∅. Since V1 ∩ V2 = ∅, this implies

Ψ1(x̂) ∩ Ψ2(x̂) ⊆ O

Thus Ψ1 ∩ Ψ2 is upper hemicontinuous.

Here is an argument for half credit using the sequential characterization of uhc. Sup-
pose Ψ1 is compact-valued. Then since Ψ2 is closed-valued, Ψ1 ∩ Ψ2 is compact-
valued. Now suppose xn → x and yn ∈ (Ψ1 ∩ Ψ2)(xn) for each n. Since Ψ1 is upper
hemicontinuous and compact-valued, there is a subsequence {ynk

} such that ynk
→ y

with y ∈ Ψ1(x). Ψ2 is closed-valued and upper hemicontinuous, so has closed graph.
Then (xnk

, ynk
) ∈ graph Ψ2 and (xnk

, ynk
) → (x, y), so (x, y) ∈ graph Ψ2, that is,

y ∈ Ψ2(x). So y ∈ Ψ1(x)∩Ψ2(x) = (Ψ1 ∩Ψ2)(x). Hence Ψ1 ∩Ψ2 is upper hemicontin-
uous.
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