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Derivatives

Definition 1. Let f: I — R, where I C R is an open interval. f
is differentiable at x € I if

@ h) - @)
h—0 h

for some a € R.



This is equivalent to da € R such that
f(@+h) = (f(z) +ah) _

lim
h—0 h
& Ve>030>0st 0<|h<d= f(x+h)_}§f(x)+ah) <e
o Ve>036>0st 0<|h|<6= |f(x+h)_|}§|f(x)+ah) <e
o 1im |f(x+h) — (f(z) + ah)] —0
h—0 |h|
~o X < e T DR W s o o~ S Jr\f&f\s:’(vﬁf““éé&g’\

T v T e R



Derivatives

Definition 2. If X C R" is open, f : X — R™ is differentiable at
x € X if AT, € L(R"®, R™) such that

o @+ h) = (f@) + T _
h—0,heR" ||
f is differentiable if it is differentiable at all x € X .

0 (1)

Note that T, is uniquely determined by Equation (1).

The definition requires that one linear operator 7, works no
matter how h approaches zero.

In this case, f(x) + Tx(h) is the best linear approximation to
f(x + h) for sufficiently small h.



Big-Oh and little-oh :

Notation:

e y=0O(|h|") as h — 0 — read "y is big-Oh of |h|"" — means
O <«
JK,6 > 0 s.t. |h| < =|y| < K|h|"
W\ > O
A L\D\H% wowaded oa
1A%
e y =o0(|h|") as h — 0 — read “y is little-oh of |h|™" — means
lim —|y!n =0
. h—0 |h| W > O es LT ©
Nesed S 5 Ol b bt ™~

Note that y = O(|h) as h — 0 implies y = 0(|h@ as h — 0.

A o ~ B RS
Al s ‘3-—; d\’\,\\, \ \3 = QQ\\I\\ \ — \S = ~ 4\/\_;_.7 o



Using this notation: f is differentiable at z < 3T, € L(R",R™)
such that

flx+h) = f(x) + Tx(h) +o(h) as h — O
(O (WD = o C L\,\w\;\-j)

%C%—v\w\ —-RE e =~ T}gL\N\IX = olw



More Notation

Notation:

e df, is the linear transformation 1.

(AP -
e Df(x) is the matrix of df, with respect to the standard basis.

This is called the Jacobian or Jacobian matrix of f at x
o E¢(h) = f(z+h) — (f(z) +dfz(h)) is the error term

Using this notation,

f is differentiable at = < E¢(h) =o(h) as h — 0



What's Df(x)?  geerder
L3k, T asts

g//’wAQ,Jlm e
Now compute Df(x) = (a;;). Let {e1,...,en} be the standard
basis of R™. Look in direction e; (note j:chat ve;l = |v]). X >0 o<
— T *x = O
o(y) = f<x+vej>—<f<x>+%ej>)
\_/\—/
(0
a1n 0O X
= flz+e) — [ f(z) + e v FY
o amn 0 Nine

7&1]
: (( ))
’Vafm]



£- RN = R

Fori=1,...,m, let f’ denote the it" component of the function
13 Lov = (S0, o, 87 OGN VRN RN VI AR
= P fz(fv + ’7€j) — (fZ(CIZ) + vaij) = 0(7)
o f?
SO Qjj = f (CC)



Derivatives and Partial Derivatives

Theorem 1 (Thm. 3.3). Suppose X C R" js open and  : X —

R™ s differentiable at x € X. Then %(a;) exists for 1 <i < m,
J
1 <53<n, and

o (@) - (@)
Df(x) = ; ;
ORI = €

i.e. the Jacobian at x is the matrix of partial derivatives at x .



Derivatives and Partial Derivatives

Remark: If f is differentiable at z, then all first-order partial

derivatives 8—f exist at x. However, the converse is false: exis-

tence of all the first-order partial derivatives does not imply that
f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives

% (1 <i<m, 1< j<n) exist and are continuous at x, then f
J
is differentiable at x.



Directional Derivatives

Suppose X C R"™ open, f : X — R™ is differentiable at x, and
|u| = 1. e 7 X o X5 - WNw\ = VWYL Wl = VX \

2

flz 4+ yu) — (f(z) + Tx(yu)) = o(y) as vy — 0
= flz+yu) — (f(2) +1Te(w) =o(r) as v — 0 (T Ynene)

~ im &) — @) — Ty(u) = Df(z)u
7—0 Y

i.e. the directional derivative in the direction u (with |u| = 1) is

Df(z)u € R™

10



Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let X C R", Y C R™ be
open, f: X —-Y,qg:Y —-RP. Letzge X and F =gqgo f. If f is
differentiable at xqg and g is differentiable at f(xg), then FF = go f
Is differentiable at o and

dFuo = dgy(sq) © dfo
(composition of linear transformations)
DF(zg) = Dg(f(z0))Df(z0)
(matrix multiplication)

Remark: The statement is exactly the same as in the univari-
ate case, except we replace the univariate derivative by a linear
transformation. The proof is more or less the same, with a bit
of linear algebra added.

11



Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case).
Let a,b € R. Suppose f : [a,b] — R is continuous on [a,b] and
differentiable on (a,b). Then there exists c € (a,b) such that

f(b) — f(a)
b—a

= f'(c)
that is, such that

f(b) — fla) = f'(c)(b— a)

Proof. Consider the function R} - Yo\ = N

O —S@,

9(z) = f(z) — f(a) —

S\)gkﬂ %k‘l\ - %L\a\: Q 12



Then g(a) =0 = g(b). Note that for =z € (a,b),

/(@) = ['(a) - LI

so it suffices to find ¢ € (a,b) such that ¢’(¢) = 0.

Case I: If g(x) = O for all z € [a,b], choose an arbitrary c € (a,b),
and note that ¢'(c) = 0, so we are done.

Case II: Suppose g(x) > 0 for some z € [a,b]. Since g is contin-
uous on |[a,b], it attains its maximum at some point ¢ € (a,b).
Since g is differentiable at ¢ and c¢ is an interior point of the
domain of g, we have ¢’(c¢) = 0, and we are done.

Case III: If g(xz) < O for some z € [a,b], the argument is similar
to that in Case II. [ ]



f(b)

f(a)

g(x) Ll KL=
(v — (- &)



Mean Value Theorem

Notation:

U(z,y) ={az+ (1 -a)y:ac(0,1]} ~ V)
) Qs )
is the line segment from x to y. X~ P>

Theorem 5 (Mean Value Theorem). Suppose f : R" —>@ is
differentiable on an open set X C R", z,y € X and ¢/(x,y) C X.
Then there exists z € ¢(x,y) such that

fly) — f(z) = Df(2)(y — =)
= A&k, Ly %)

14



L2 @™ 1

Notice that the statement is exactly the same as in the univariate
case. For f: R" — R™, we can apply the Mean Value Theorem
to each component, to obtain z1,..., zm € £(x,y) such that

') — fi(z) = Df'(z)(y — z)
However, we cannot find a single z which works for every com-
ponent.

Note that each z; € 4(xz,y) C R"™; there are m of them, one for
each component in the range.

15



Mean Value Theorem

ose X C R" is open and f : X — R™ s differ-
x,y) C X, then there exists z € £(x,y)

Theorem 6. S
entiable. If x,y € X a
such that

- (y — )| = U DF@Gy-o 0

ldf=lly — =

Soesoars el e
Q:Jléauxf)

-(:-«J‘QUV\

[f(y) — f(z)]

IA A

2o Wyl

Clpy —Luy = D6y ) 4

A N
/"‘\

" B

e X O)&%_:MQ’\% ~



Mean Value Theorem

Remark: To understand why we don’'t get equality, consider
f:[0,1] — R? defined by
f(t) = (cos2nt,sin2xt)
f maps [0, 1] to the unit circle in R2. Note that f(0) = f(1) =
(1,0), so |f(1) — f(0)| = 0. However, for any z € [0, 1],
|df.(1 —0)] = |27(—sin2wz,Ccos2nz)|

277\/sin2 27z + COS? 272
21 4 \Sly -S>\ = O

-QL&\ — L0 :\( b—% (=\ - (- b\ Nx € is\\l

17



Taylor's Theorem — R

Theorem 7 (Thm. 1.9, Taylor's Theorem in R). Let f : I — R
be n-times differentiable, where I C R is an open interval. If
x,x+ h €I, then

n=1 (k) (p\pk
Fath) =)+ S @ g
k=1

k!
where f(k) js the k" derivative of f and

I e G R for some A € (0,1) w~_ o R

O o r N N

En

n!

L

S U\Jmo@f\c&‘&f
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Motivation: Let

To(h) =

n . r(k) k PRI G
f@+ > 4 ;f)h WO srter PO e
k=1 '
/! 2 (n) n
= @)+ fn+ T TR

T7(0)
T/ (h) =
T/(0) =
T/(h) =

T/(0) =

(M (0) =

= f(=z)

f(n)(x)hn—ﬂ_

() + f"()h+ -+

(n—1)!
f'(x) o
" ) (g)pn—2
P+ O
()
f(n)(x)

19



so Ty (h) is the unique nt" degree polynomial such that

f(x)
f'(x)

T (0)
T,,(0)

$(©0) = ()



Taylor's Theorem — R

Theorem 8 (Alternate Taylor's Theorem in R). Let f: I — R
be n times differentiable, where I C R is an open interval and
x e l. Then

n_ (k) (2)LE
fa+n) =@+ Y Tk
k=1 '

+o(h™) ash — 0

If f is (n+4+ 1) times continuously differentiable, then

n_ (k) (2)HE
fa+n = @)+ 3 Lo
k=1 '

—|—O<h”+1) as h — 0

Remark: The first equation in the statement of the theorem is
essentially a restatement of the definition of the nt" derivative.
The second statement is proven from Theorem 1.9, and the
continuity of the derivative.

20



C* Functions

Definition 3. Let X C R™ be open. A function f : X — R™ s
continuously differentiable on X if

e f is differentiable on X and

e df; is a continuous function of x from X to L(R"™,R™), with
respect to the operator norm ||dfz]||

fis Ck if all partial derivatives of order < k exist and are contin-
uous in X.

21



C* Functions

Theorem 9 (Thm. 4.3). Suppose X C R"™ is open and f: X —
R'™. Then f is continuously differentiable on X if and only if f
is 1.

22



Taylor's Theorem — Linear Terms

Theorem 10. Suppose X CR" isopenandx e X. If f: X — R™
is differentiable, then

fl@+h)=f(z) + Df(z)h+o(h) as h — 0

This is essentially a restatement of the definition of differentia-
bility.

\\ _;(_’y_,_k/\/\-\ — LQCJQB £ 62 W) W\

_—

> ©

- (TN oo UL O
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Taylor's Theorem — Linear Terms

Theorem 11 (Corollary of 4.4). Suppose X C R" is open and
reX. IfFf: X —R™ s C?, then

f(x 4+ h) = f(z) + Df(z)h + O <|h|2) as h — 0

RSV %c\,@\ a \D—cha\-\,\wkk - Louched

_

NN\ os k=70
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Tavlor's Theorem — Quadratic Terms

We treat each component of the function separately, so consider
f: X —-R, X CR"™an open set. Let

a2f o2 f o2 f
( 85’71 85628561(x) 8xn8x1( )\
o2 f 02 f
sz(x) — 8:618:62( ) 83;2 (x) o 8xn8x2 (x)
82f : :
o2 f 02 f
cC? = =
= D?f(z) is symmetric
= sz(ac) has eigenvectors that are an orthonormal basis

and thus can be diagonalized

25



Tavlor's Theorem — Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let X C R" be
open, f: X - R, feC?X), and z € X. Then

f(x+h) = f(z) + Df(x)h + %hT(DQf(a;))h +o0 (|h|2) as h — 0

If f € C3,

f(x+h) = f(z) + Df(z)h + %hT(DQf(a;))h + 0 (|h|3) as h — 0

26



Characterizing Critical Points

Definition 4. We say f has a saddle at x if Df(x) = 0 but f has
neither a local maximum nor a local minimum at x.

P eas o erdcah pedaAN ox % K DC ) = O
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Characterizing Critical Points

Corollary 1. Suppose X CR" isopenandxz e X. If f : X - R is
C?, there is an orthonormal basis {v1,...,vn} and corresponding
eigenvalues \1,..., ., € R of D2f(z) such that

W = TZ*SN;
f($ + h) — f($ + /71/01 + + ’Yn’l}n) v
= @+ Y (%)vzm + 1S a2 4o ()
=1 z—l
where ~; = h - v;. Ok A=

1. If f € C3, we may strengthen o <|7|2) to O <|7|3).

2. If f has a local maximum or local minimum at x, then

Df(x) =0

28



3. If Df(x) = 0, then
® \,....\n>0= f has a local minimum at x
e \,...,.\n< 0= f has a local maximum at x

e \; <0 for somei, A\; > 0 for some j = f has a saddle at

T

e \,...,.\n >0, \; >0 for some 1 = f has a local minimum
or a saddle at x

e \,...,.\n <0, \; <O for some 1= f has a local maximum
or a saddle at x

e \{ = .- = X\p =0 gives no information.



Proof. (Sketch) From our study of quadratic forms, we know
the behavior of the quadratic terms is determined by the signs
of the eigenvalues. If \;, = 0 for some ¢, then we know that
the quadratic form arising from the second partial derivatives is
identically zero in the direction v;, and the higher derivatives will
determine the behavior of the function f in the direction v;. For
example, if f(z) = 23, then f/(0) = 0, f”(0) = 0, but we know
that f has a saddle at © = 0; however, if f(z) = z*, then again
f'(0) = 0 and f”(0) = 0 but f has a local (and global) minimum
at £ = 0. [ ]



