Econ 204 2016

Lecture 1

Outline

1. Introductions
2. About the Course and Other Administrative Details
3. Methods of Proof
4. Equivalence Relations
5. Cardinality
Introductions

Welcome

- 204
- Berkeley Economics
- UC Berkeley
- Berkeley
- California
US...
Introductions

• Chris Shannon

• Tamas Batyi

• Walker Ray
About the Course

- **Schedule:** Lectures MTWThF 9:30 - 11:30 101 Wurster Hall, often going over so don’t schedule anything before 12:00

 Sections: MTWThF 1:30 - 3:00 and 3:00 - 4:30, in 597 Evans (please try to split up evenly)

 Office hours: Chris Shannon MTWThF 11:30 - 12:30 here or 511 Evans, also by appt.

 Tamas + Walker MTWThF 4:30 - 5:30 Location TBA

- **Final Exam:** Wednesday August 17, 9:00 am - 12:00 pm, 3106 Etcheverry Hall
• **Prerequisites:** Math 53-54 at Berkeley or equivalent

 – 4 semesters college mathematics

 – linear algebra

 – multivariable calculus

 – rigorous approach - theorems stated carefully and some proofs given

 – stream for engineers and scientists
Course requirements:

- problems sets: 6 total
 (no late problem sets...no exceptions)

- exam

- reading/working on your own

Grade: 10% problem sets (5 highest scores out of 6), 90% final exam
Grading in First Year Economics Courses:

- median grade = B+: solid command of material

- A and A- are very good grades, A+ for truly exceptional work

- B: ready to go on to further work...a B in 204 means you are ready to go on to 201a/b, 202a/b, 240a/b

- B-: very marginal, but we won’t make you take the class again. B- in 204 means you will have a very hard time in 201a/b. Recommend you take Math 53 and 54 this year, maybe Math 104, come back next year to retake 204 and
take 201a/b. B- is a passing grade, but you must maintain a B average

- C: not passing. Definitely not ready for 201a/b, 202a/b, 240a/b. Take Math 53-54 this year, maybe Math 104, retake 204 next year

- 204 with at least a B- (or a waiver from 204 requirement) is a strictly enforced prerequisite for enrollment in 201a/b

- F: means you didn’t take the final exam. Be sure to withdraw if you don’t or can’t take the final.
Resources:

Book: de la Fuente, *Mathematical Methods and Models for Economists*

Lecture notes: for every lecture + supplements for several topics

Be sure to read Corrections Handout with dIF

Seek out other references
This class is not normal...

- lectures

- expectations

- classroom stuff
Goals for 204

- reduce heterogeneity of math backgrounds for students in Econ graduate classes
- advance everyone’s math skills and knowledge
- present some particular concepts and results used in first-year economics courses 201a/b, 202a/b, 240a/b
- challenge everyone - so not everyone will understand everything
• develop basic math skills and knowledge needed to work as a professional economist and read academic economics

• develop ability to read and evaluate purported proofs...essential for reading and working in all branches of economics - theoretical, empirical, experimental

• develop ability to compose simple proofs...essential to working in all branches of economics - theoretical, empirical, experimental

• cover selected material from real analysis and linear algebra at moderate level of abstraction (considerably more advanced and abstract than Math 53 + 54)
• **not** to review Math 53 + 54. If you are weak on this material, take Math 53-54 this year, and take 204 next year.
Learning by Doing

• to learn this sort of mathematics you need to do more than just read the book and notes and listen to lectures

• active reading: work through each line, be sure you know how to get from one line to the next

• active listening: follow each step as we work through arguments in class

• working problems: the most valuable part of the class
• working in groups strongly encouraged…

• but, always try to work through all of the problems before talking to others

• everyone must write up his/her own solutions

• best test of understanding: can you explain it to others
Methods of Proof

What is a proof? The million dollar question...

Main Methods of Proof:

- deduction
- contraposition
- induction
- contradiction
We’ll examine each of these in turn.
Proof by Deduction

Proof by Deduction: A list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or

- a previously established theorem; or

- follows from previous statements in the list by a valid rule of inference
Proof by Deduction

Example: Prove that the function $f(x) = x^2$ is continuous at $x = 5$.

Recall from one-variable calculus that $f(x) = x^2$ is continuous at $x = 5$ means

\[
\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } |x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon
\]

That is, “for every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever x is within δ of 5, $f(x)$ is within ε of $f(5)$.”

To prove the claim, we must systematically verify that this definition is satisfied.
Proof. Let $\varepsilon > 0$ be given. Let

$$
\delta = \min \left\{ 1, \frac{\varepsilon}{11} \right\} > 0
$$

$\delta \leq \frac{\varepsilon}{11}$

Where did that come from? Suppose $|x - 5| < \delta$. Since $\delta \leq 1$, $4 < x < 6$, so $9 < x + 5 < 11$ and $|x + 5| < 11$. Then

$$
|f(x) - f(5)| = |x^2 - 25| = |(x + 5)(x - 5)| = |x + 5||x - 5| < 11 \cdot \delta \leq 11 \cdot \frac{\varepsilon}{11} \leq \varepsilon
$$

Thus, we have shown that for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$, so f is continuous at $x = 5$. \Box
Proof by Contraposition

Recall some basics of logic.

¬P means “P is false.”

P ∧ Q means “P is true and Q is true.”

P ∨ Q means “P is true or Q is true (or possibly both).”

¬P ∧ Q means (¬P) ∧ Q; ¬P ∨ Q means (¬P) ∨ Q.

P ⇒ Q means “whenever P is satisfied, Q is also satisfied.”

Formally, P ⇒ Q is equivalent to ¬P ∨ Q.
Proof by Contraposition

The *contrapositive* of the statement $P \Rightarrow Q$ is the statement $\neg Q \Rightarrow \neg P$.

Theorem 1. $P \Rightarrow Q$ is true if and only if $\neg Q \Rightarrow \neg P$ is true.

Proof. Suppose $P \Rightarrow Q$ is true. Then either P is false, or Q is true (or possibly both). Therefore, either $\neg P$ is true, or $\neg Q$ is false (or possibly both), so $\neg (\neg Q) \lor (\neg P)$ is true, that is, $\neg Q \Rightarrow \neg P$ is true.

Conversely, suppose $\neg Q \Rightarrow \neg P$ is true. Then either $\neg Q$ is false, or $\neg P$ is true (or possibly both), so either Q is true, or P is false (or possibly both), so $\neg P \lor Q$ is true, so $P \Rightarrow Q$ is true. \qed
Theorem 2. For every \(n \in \mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \),

\[
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\]

i.e. \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \).

Proof. \textbf{Base step} \(n = 0 \): \(\text{LHS} = \sum_{k=1}^{0} k = \text{the empty sum} = 0 \). \(\text{RHS} = \frac{0 \cdot 1}{2} = 0 \)

So the claim is true for \(n = 0 \).
Induction step: Suppose

\[\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ for some } n \geq 0 \]

We must show that

\[\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} \]
\[
\text{LHS} = \sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1)
\]

By the Induction hypothesis,

\[
= \frac{n(n + 1)}{2} + (n + 1)
\]

\[
= (n + 1) \left(\frac{n}{2} + 1 \right)
\]

\[
= \frac{(n + 1)(n + 2)}{2}
\]

\[
\text{RHS} = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2} = \text{LHS}
\]

So by mathematical induction, \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \) for all \(n \in \mathbb{N}_0 \). \(\Box \)
Proof by Contradiction

Assume the negation of what is claimed, and work toward a contradiction.

Theorem 3. There is no rational number \(q \) such that \(q^2 = 2 \).

Proof. Suppose \(q^2 = 2 \) where \(q \in \mathbb{Q} \). Then we can write \(q = \frac{m}{n} \) for some integers \(m, n \in \mathbb{Z} \). Moreover, we can assume that \(m \) and \(n \) have no common factor; if they did, we could divide it out.

\[
2 = q^2 = \frac{m^2}{n^2}
\]

Therefore, \(m^2 = 2n^2 \), so \(m^2 \) is even.
We claim that m is even. If not, then m is odd, so $m = 2p + 1$ for some $p \in \mathbb{Z}$. Then

\[m^2 = (2p + 1)^2 = 4p^2 + 4p + 1 = 2(2p^2 + 2p) + 1 \]

which is odd, contradiction. Therefore, m is even, so $m = 2r$ for some $r \in \mathbb{Z}$.

\[4r^2 = (2r)^2 = m^2 = 2n^2 \]

\[n^2 = 2r^2 \]

So n^2 is even, which implies (by the argument given above) that n is even. Therefore, $n = 2s$ for some $s \in \mathbb{Z}$, so m and n have a
common factor, namely 2, contradiction. Therefore, there is no rational number q such that $q^2 = 2$. □
Equivalence Relations

Definition 1. A binary relation \(R \) from \(X \) to \(Y \) is a subset \(R \subseteq X \times Y \). We write \(xRy \) if \((x, y) \in R \) and “not \(xRy \)” if \((x, y) \not\in R \). \(R \subseteq X \times X \) is a binary relation on \(X \).

Example: Suppose \(f : X \to Y \) is a function from \(X \) to \(Y \). The binary relation \(R \subseteq X \times Y \) defined by

\[
xRy \iff f(x) = y
\]

is exactly the graph of the function \(f \). A function can be considered a binary relation \(R \) from \(X \) to \(Y \) such that for each \(x \in X \) there exists exactly one \(y \in Y \) such that \((x, y) \in R \).

Example: Suppose \(X = \{1, 2, 3\} \) and \(R \) is the binary relation on \(X \) given by \(R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\} \). This is the binary relation “is weakly greater than,” or \(\geq \).
Equivalence Relations

Definition 2. A binary relation R on X is

(i) reflexive if $\forall x \in X, xRx$

(ii) symmetric if $\forall x, y \in X, xRy \Leftrightarrow yRx$

(iii) transitive if $\forall x, y, z \in X, (xRy \land yRz) \Rightarrow xRz$

Definition 3. A binary relation R on X is an equivalence relation if it is reflexive, symmetric and transitive.
Equivalence Relations

Definition 4. Given an equivalence relation R on X, write

$$[x] = \{y \in X : xRy\}$$

$[x]$ is called the equivalence class containing x.

The set of equivalence classes is the quotient of X with respect to R, denoted X/R. "$X \ mod \ R$"

Example: The binary relation \geq on \mathbb{R} is not an equivalence relation because it is not symmetric.

Example: Let $X = \{a, b, c, d\}$ and

$$R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}$$

R is an equivalence relation (why?) and the equivalence classes of R are $\{a, b\}$ and $\{c, d\}$. $X/R = \\{\{a, b\}, \{c, d\}\} = \\{[a], [b], [c], [d]\}$

$[a] = \{a, b\}$ $[c] = \{c, d\}$

$[b] = \{a, b\}$ $[d] = \{c, d\}$
Equivalence Relations

The equivalence classes of an equivalence relation form a partition of X: every element of X belongs to exactly one equivalence class.

Theorem 4. Let R be an equivalence relation on X. Then $\forall x \in X, x \in [x]$. Given $x, y \in X$, either $[x] = [y]$ or $[x] \cap [y] = \emptyset$.

Proof. If $x \in X$, then xRx because R is reflexive, so $x \in [x]$.

Suppose $x, y \in X$. If $[x] \cap [y] = \emptyset$, we’re done. So suppose $[x] \cap [y] \neq \emptyset$. We must show that $[x] = [y]$, i.e. that the elements of $[x]$ are exactly the same as the elements of $[y]$.
Choose $z \in [x] \cap [y]$. Then $z \in [x]$, so xRz. By symmetry, zRx. Also $z \in [y]$, so yRz. By symmetry again, zRy. Now choose $w \in [x]$. By definition, xRw. Since zRx and R is transitive, zRw. By symmetry, wRz. Since zRy, wRy by transitivity again. By symmetry, yRw, so $w \in [y]$, which shows that $[x] \subseteq [y]$. Similarly, $[y] \subseteq [x]$, so $[x] = [y]$. \hfill \Box
Cardinality

Definition 5. Two sets A, B are **numerically equivalent** (or have the same cardinality) if there is a **bijection** $f : A \rightarrow B$, that is, a function $f : A \rightarrow B$ that is 1-1 ($a \neq a' \Rightarrow f(a) \neq f(a')$), and onto ($\forall b \in B \exists a \in A$ s.t. $f(a) = b$).

Example: $A = \{2, 4, 6, \ldots, 50\}$ is numerically equivalent to the set $\{1, 2, \ldots, 25\}$ under the function $f(n) = 2n$.

$B = \{1, 4, 9, 16, 25, 36, 49 \ldots\} = \{n^2 : n \in \mathbb{N}\}$ is numerically equivalent to \mathbb{N}.
Cardinality

A set is either finite or infinite. A set is finite if it is numerically equivalent to \(\{1, \ldots, n\} \) for some \(n \). A set that is not finite is infinite.

In particular, \(A = \{2, 4, 6, \ldots, 50\} \) is finite, \(B = \{1, 4, 9, 16, 25, 36, 49 \ldots\} \) is infinite.

A set is countable if it is numerically equivalent to the set of natural numbers \(\mathbb{N} = \{1, 2, 3, \ldots\} \). An infinite set that is not countable is called uncountable.
Cardinality

Example: The set of integers \mathbb{Z} is countable.

$$Z = \{0, 1, -1, 2, -2, \ldots\}$$

Define $f : \mathbb{N} \to \mathbb{Z}$ by

$$f(1) = 0$$
$$f(2) = 1$$
$$f(3) = -1$$
$$\vdots$$

$$f(n) = (-1)^n \left\lfloor \frac{n}{2} \right\rfloor$$

where $[x]$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.
Cardinality

Theorem 5. The set of rational numbers \mathbb{Q} is countable.

“Picture Proof”:

$$Q = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

$$= \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
Go back and forth on upward-sloping diagonals, omitting the
repeats:

\[
\begin{align*}
 f(1) &= 0 \\
 f(2) &= 1 \\
 f(3) &= \frac{1}{2} \\
 f(4) &= -1 \\
 \vdots
\end{align*}
\]

\[f : \mathbb{N} \rightarrow \mathbb{Q},\] \(f\) is one-to-one and onto.