Econ 204 2016

Lecture 2

Outline

- 1. Cardinality (cont.)
- 2. Algebraic Structures: Fields and Vector Spaces
- 3. Axioms for ${\bf R}$
- 4. Sup, Inf, and the Supremum Property
- 5. Intermediate Value Theorem

Cardinality (cont.)

Notation: Given a set A, 2^A is the set of all subsets of A. This is the "power set" of A, also denoted P(A).

Important example of an uncountable set:

Theorem 1 (Cantor). 2^N , the set of all subsets of N, is not countable.

Proof. Suppose $2^{\mathbb{N}}$ is countable. Then there is a bijection f: $\mathbb{N} \to 2^{\mathbb{N}}$. Let $A_m = f(m)$. We create an infinite matrix, whose

 $(m,n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

			\mathbf{N}			
		1	2	3	4	5
$A_1 =$	Ø	0	0			0
	{1}					
$2^{N} A_{3} =$	$\{1, 2, 3\}$					
•						1
$A_5 = :$	2N	0 :	1 :	0 :	1 :	0 · · · · : · · .

Now, on the main diagonal, change all the 0s to 1s and vice

versa:

				\mathbf{N}			
			1	2	3	4	5
	$A_1 =$	Ø	1	0	0	0	0
	$A_2 =$	$\{1\}$	1	1	0	0	0
2 ^N	$A_{3} =$	{1,2,3} N	1	1	0	0	0
	$A_5 = :$	2N	0 :	1 :	0 :	1 :	$\begin{array}{ccc} 1 & \cdots & \\ \vdots & \ddots & \end{array}$

Let

 $t_{mn} = \begin{cases} 1 & \text{if } n \in A_m \\ 0 & \text{if } n \notin A_m \end{cases}$ Let $A = \{m \in \mathbb{N} : t_{mm} = 0\}.$ $m \in A \iff t_{mm} = 0$ $\Leftrightarrow m \notin A_m$ $1 \in A \iff 1 \notin A_1 \text{ so } A \neq A_1$ $2 \in A \iff 2 \notin A_2 \text{ so } A \neq A_2$ \vdots $m \in A \iff m \notin A_m \text{ so } A \neq A_m$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.

Some Additional Facts About Cardinality

Recall we let |A| denote the cardinality of a set A.

- if A is numerically equivalent to $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, then |A| = n.
- A and B are numerically equivalent if and only if |A| = |B|
- if |A| = n and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then |A| < |B|

• if A is countable and B is uncountable, then

 $n < |A| < |B| \quad \forall n \in \mathbf{N}$

- if $A \subseteq B$ then $|A| \leq |B|$
- if $r: A \to B$ is 1-1, then $|A| \leq |B|$
- if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable
- if $r : A \rightarrow B$ is 1-1 and B is countable, then A is at most countable

Algebraic Structures: Fields

Definition 1. A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. Associativity of +:

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

2. Commutativity of +:

$$\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha$$

3. Existence of additive identity:

$$\exists ! 0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha$$

4. Existence of additive inverse:

 $\forall \alpha \in F \exists ! (-\alpha) \in F \text{ s.t. } \alpha + (-\alpha) = (-\alpha) + \alpha = 0$ Define $\alpha - \beta = \alpha + (-\beta)$

5. Associativity of · :

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

6. Commutativity of · :

$$\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha$$

7. Existence of multiplicative identity:

 $\exists ! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha$

8. Existence of multiplicative inverse:

 $\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \exists ! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$ Define $\frac{\alpha}{\beta} = \alpha \beta^{-1}$.

9. Distributivity of multiplication over addition:

$$\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Fields

Examples:

• R

• C = {
$$x + iy : x, y \in \mathbb{R}$$
}. $i^2 = -1$, so
 $(x+iy)(w+iz) = xw + ixz + iwy + i^2yz = (xw - yz) + i(xz + wy)$

• Q: $Q \subset R$, $Q \neq R$. Q is closed under $+, \cdot$, taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on R, so Q is a field.

- $\bullet~N$ is not a field: no additive identity.
- Z is not a field; no multiplicative inverse for 2.
- $Q(\sqrt{2})$, the smallest field containing $Q \cup \{\sqrt{2}\}$. Take Q, add $\sqrt{2}$, and close up under +, \cdot , taking additive and multiplicative inverses. One can show

$$\mathbf{Q}(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbf{Q}\}$$

For example,

$$(q+r\sqrt{2})^{-1} = \frac{q}{q^2-2r^2} - \frac{r}{q^2-2r^2}\sqrt{2}$$

("Arithmetic mod 2")

Vector Spaces

Definition 2. A vector space is a 4-tuple $(V, F, +, \cdot)$ where V is a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $\cdot : F \times V \rightarrow V$ is called scalar multiplication, satisfying

1. Associativity of +:

$$\forall x, y, z \in V, (x + y) + z = x + (y + z)$$

2. Commutativity of +:

$$\forall x, y \in V, \ x + y = y + x$$

3. Existence of vector additive identity:

 $\exists ! 0 \in V \text{ s.t. } \forall x \in V, x + 0 = 0 + x = x$

4. Existence of vector additive inverse: $\forall x \in V \exists ! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0$ Define x - y to be x + (-y).

5. Distributivity of scalar multiplication over vector addition: $\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$

6. Distributivity of scalar multiplication over scalar addition: $\forall \alpha, \beta \in F, x \in V \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ 7. Associativity of · :

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

8. Multiplicative identity:

$$\forall x \in V \quad \mathbf{1} \cdot x = x$$

(Note that 1 is the multiplicative identity in F; $1 \notin V$)

Vector Spaces

Examples:

- 1. \mathbf{R}^n over \mathbf{R} .
- 2. \mathbf{R} is a vector space over \mathbf{Q} :

(scalar multiplication) $q \cdot r = qr$ (product in R)

R is not finite-dimensional over **Q**, i.e. **R** is not \mathbf{Q}^n for any $n \in \mathbf{N}$.

3. \mathbf{R} is a vector space over \mathbf{R} .

- 4. $Q(\sqrt{2})$ is a vector space over Q. As a vector space, it is Q^2 ; as a field, you need to take the funny field multiplication.
- 5. $Q(\sqrt[3]{2})$, as a vector space over Q, is Q^3 .
- 6. $(F_2)^n$ is a *finite* vector space over F_2 .
- 7. C([0,1]), the space of all continuous real-valued functions on [0,1], is a vector space over **R**.
 - vector addition:

$$(f+g)(t) = f(t) + g(t)$$

Note we define the function f + g by specifying what value it takes for each $t \in [0, 1]$.

• scalar multiplication:

$$(\alpha f)(t) = \alpha(f(t))$$

- vector additive identity: 0 is the function which is identically zero: O(t) = 0 for all $t \in [0, 1]$.
- vector additive inverse:

$$(-f)(t) = -(f(t))$$

Axioms for R

- 1. R is a field with the usual operations +, \cdot , additive identity 0, and multiplicative identity 1.
- 2. Order Axiom: There is a complete ordering \leq , i.e. \leq is reflexive, transitive, antisymmetric ($\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$) with the property that

 $\forall \alpha, \beta \in \mathbf{R}$ either $\alpha \leq \beta$ or $\beta \leq \alpha$

The order is compatible with + and \cdot , i.e.

$$\forall \alpha, \beta, \gamma \in \mathbf{R} \left\{ \begin{array}{ccc} \alpha \leq \beta & \Rightarrow & \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma & \Rightarrow & \alpha \gamma \leq \beta \gamma \end{array} \right.$$

 $\alpha \geq \beta$ means $\beta \leq \alpha$. $\alpha < \beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta$.

Completeness Axiom

3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

 $\ell \leq h \quad \forall \ell \in L, h \in H$

Then

$$\exists \alpha \in \mathbf{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

$$\begin{array}{ccc} & \alpha \\ & L & \downarrow & H \\ ---- & \cdot & \cdot & (---- \end{array}$$

The Completeness Axiom differentiates \mathbf{R} from \mathbf{Q} : \mathbf{Q} satisfies all the axioms for \mathbf{R} except the Completeness Axiom.

Sups, Infs, and the Supremum Property Definition 3. Suppose $X \subseteq \mathbb{R}$. We say u is an upper bound for X if

 $x \le u \; \forall x \in X$

and ℓ is a lower bound for X if

 $\ell \leq x \,\,\forall x \in X$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 4. Suppose X is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

 $\sup X \ge x \quad \forall x \in X \text{ (sup } X \text{ is an upper bound)}$

 $\forall y < \sup X \exists x \in X \text{ s.t. } x > y \text{ (there is no smaller upper bound)}$

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound for X, i.e. inf X satisfies

 $\inf X \leq x \quad \forall x \in X \text{ (inf } X \text{ is a lower bound)}$

 $\forall y > \inf X \exists x \in X \text{ s.t. } x < y \text{ (there is no greater lower bound)}$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.

The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: sup X need not be an element of X. For example, $sup(0,1) = 1 \notin (0,1)$.

The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbb{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

 $x \le u \; \forall x \in X, u \in U$

By the Completeness Axiom,

$$\exists \alpha \in \mathbf{R} \text{ s.t. } x \leq \alpha \leq u \quad \forall x \in X, u \in U$$

 α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X,

so $\sup X = \alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}$, $L \neq \emptyset \neq H$, and

 $\ell \leq h \; \forall \ell \in L, h \in H$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

 $\ell \leq \alpha \; \forall \ell \in L$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

 $\ell \leq \alpha \leq h \; \forall \ell \in L, h \in H$

so the Completeness Axiom holds.

Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

$$\forall x, y \in \mathbf{R}, y > 0 \exists n \in \mathbf{N} \text{ s.t. } ny = (y + \dots + y) > x$$

n times

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \Box

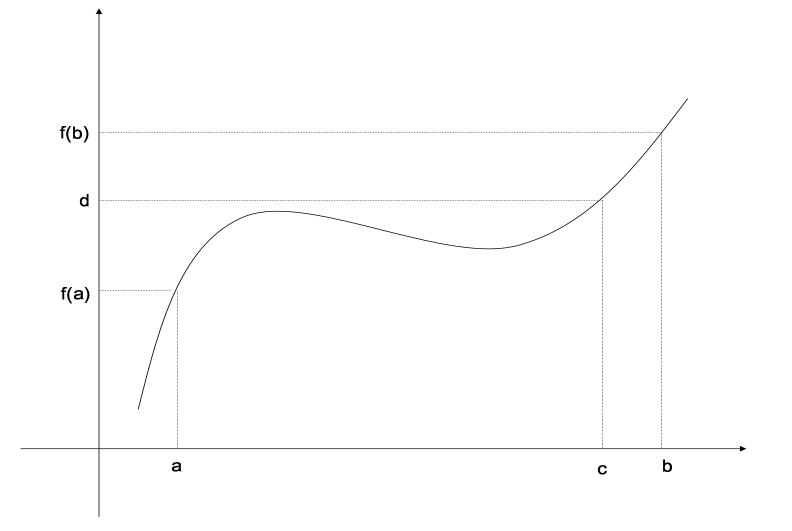
Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). Suppose $f : [a,b] \rightarrow \mathbb{R}$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a,b)$ such that f(c) = d.

Proof. Later, we will give a slick proof. Here, we give a barehands proof using the Supremum Property. Let

$$B = \{x \in [a, b] : f(x) < d\}$$

 $a \in B$, so $B \neq \emptyset$; $B \subseteq [a,b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \ge a$. $B \subseteq [a,b]$, so $c \le b$. Therefore, $c \in [a,b]$.



We claim that f(c) = d. If not, suppose f(c) < d. Then since f(b) > d, $c \neq b$, so c < b. Let $\varepsilon = \frac{d-f(c)}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) < f(c) + \varepsilon$$

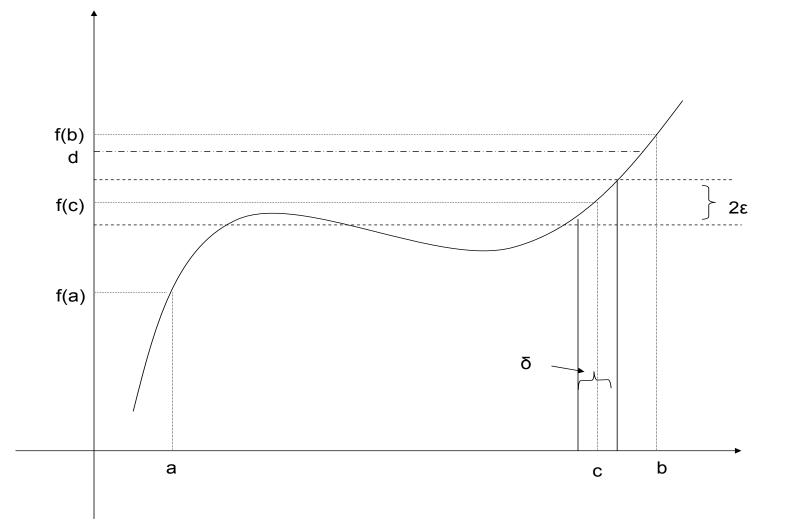
$$= f(c) + \frac{d - f(c)}{2}$$

$$= \frac{f(c) + d}{2}$$

$$< \frac{d + d}{2}$$

$$= d$$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.



Suppose f(c) > d. Then since f(a) < d, $a \neq c$, so c > a. Let $\varepsilon = \frac{f(c)-d}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) > f(c) - \varepsilon$$

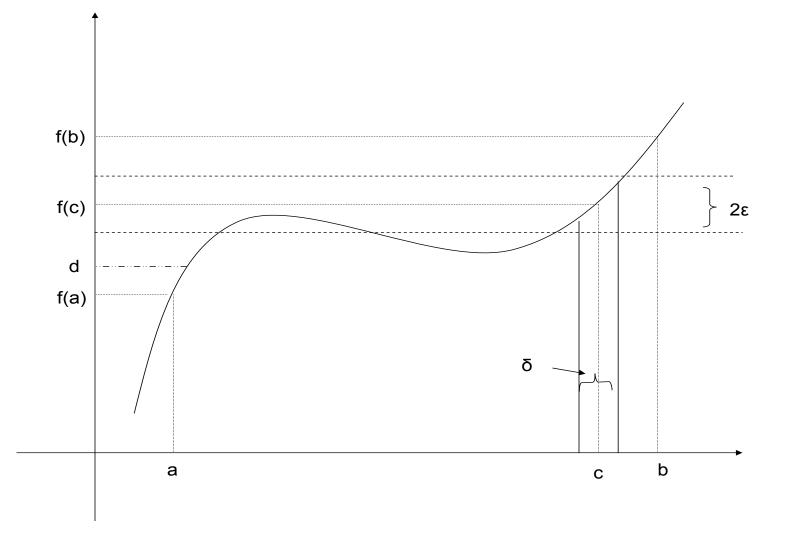
$$= f(c) - \frac{f(c) - d}{2}$$

$$= \frac{f(c) + d}{2}$$

$$> \frac{d + d}{2}$$

$$= d$$

so $(c-\delta, c+\delta) \cap B = \emptyset$. So either there exists $x \in B$ with $x \ge c+\delta$ (in which case c is not an upper bound for B) or $c-\delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \ne \sup B$, contradiction.



Since $f(c) \not\leq d$, $f(c) \not\geq d$, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, $a \neq c \neq b$, so $c \in (a, b)$. **Corollary 1.** There exists $x \in \mathbf{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0,2]$. f is continuous (Why?). f(0) = 0 < 2 and f(2) = 4 > 2, so by the Intermediate Value Theorem, there exists $c \in (0,2)$ such that f(c) = 2, i.e. such that $c^2 = 2$.