Econ 204 2016

Lecture 3
Outline
1. Metric Spaces and Normed Spaces

2. Convergence of Sequences in Metric Spaces
3. Sequences in R and R"



Metric Spaces and Metrics

Generalize distance and length notions in R™

Definition 1. A metric space is a pair (X,d), where X is a set
andd: X x X — R4 a function satisfying
R el s 2y

1. d(z,y) >0, d(z,y) =0 x=yVa,ye X

2. d(z,y) = d(y,x) Vz,y € X

3. triangle inequality:

d(z,z) <d(z,y) +d(y,z) Vz,y,z€ X
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A functiond : X x X — R_|_ satisfying 1-3 above is called a metric
on X.

A metric gives a notion of distance between elements of X.



Normed Spaces and Norms

Definition 2. Let V be a vector space over R. A norm on V is
a function || - || : V — Ry satisfying

1. ||| >0VxeV

2. |lz|]l =0 x=0Vx eV

3. triangle inequality:

lz +yll < llzf| + lyl| Yo,y € V
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4. ||lax|| = |al||z|| Va € R,z € V

A normed vector space is a vector space over R equipped with
a norm.

A norm gives a notion of length of a vector in V.



Normed Spaces and Norms

Example: In R", standard notion of distance between two vec-

tors x and y measures length of difference x — vy, i.e.,

d(w,y) = llo —yll = /X5y (2 — vi)2. 2 o)
xeWR™  w= (xy,_—, ¥~ ) U= = OO

U=\
In an abstract normed vector space, the norm can be used anal-
ogously to define a notion of distance.
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Theorem 1. Let (V.|| -||) be a normed vector space. Let
d:V xV = R, be defined by

d(v, w) = [jv — w]|

Then (V,d) is a metric space.



Proof. We must verify that d satisfies all the properties of a

metric.
1. Let v,w € V. Then by definition, d(v,w) = |lv — w| > 0
(why?), and
dlv,w) =0 & |lv—w| =0 Ao vd SN
S v—w=0""
& (w4 (—w)+w=w
&S v+ ((—w)+w) =w
&S v+0=w
S v=w

ﬁ\ﬁ\ﬂ“”ﬁ};?ﬁrst, note that foranyx eV, 0-2=(040)- 2 =0-24+0-x,
soO0-2=0. Then0=0-2=(1-1)-xa=1-z4+(-1) -z =

<“&

L

O’o\&\;\l



o< 4+ (—1) -z, so we have (—1) -z = (—=z). Then let v,w € V.

d(v,w) [l =

v —w

— 1ffjv — w]
(=) (v + (—w))|
(=Dv+ (=1)(—w)|
— v+ w||

w + (—v)|

w — v

d(w, v)
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3. Let u,w,v € V. OMJ&
= Jut (~v+v) —wl
— (LU_1>+@_1‘)|| AR ‘o UASG,
< ol + o= wl SR

d(u,v) + d(v, w)

Thus d is a metric on V. [ ]



Normed Spaces and Norms

Examples

Py | deordard  noran

e E": n-dimensional Euclidean space.

—

. mn
eI o V=R", |z]z=|z| = J S (21)2

1=1

n
e V=R" |z|1 = X |z;| (the “taxi cab” norm or L' norm)
i=1

o V =R" |z]co = max{|z1]|,...,|zn|} (the maximum norm, or
sup norm, or L° norm)
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e C([0,1]), [|flloo = sup{|f()| : € [0, 1]}

NEC(0,11), 1flls = IR ()2 dt

\

¢ C([0,1]), IfllL = | (t)| dt



Normed Spaces and Norms

Theorem 2 (Cauchy-Schwarz Inequality).

If v,w € R", then
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Equivalent Norms

A given vector space may have many different norms: if || - || is
a norm on a vector space V, so are 2||-|| and 3|/ - || and k|| - || for
any k£ > 0.

Less trivially, R"™ supports many different norms as in the ex-
amples above. Different norms on a given vector space yield
different geometric properties.
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Equivalent Norms

Definition 3. Two norms || - || and || - ||* on the same vector
space V are said to be Lipschitz-equivalent ( or equivalent ) if

Im, M >0 s.t. Ve eV, -
ml|z|| < ||z||* < M|z

Equivalently, dm, M > 0 s.t. Vx € V,x #= 0,

*
m < gl <M
|||
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Equivalent Norms

If two norms are equivalent, then they define the same notions of

convergence and continuity. For topological purposes, equivalent
norms are indistinguishable.

For example, suppose two norms || - || and || - ||* on the vector
space V are equivalent, and fix x € V. Let

B&?(x? || ) ||)
B&?(x? || ) ||*)

Then for any € > 0,

lveVi|z—yl <e}
{yeV i i|z—yl* <e}

Be (2, - 1) € Be(a, [ - ) € Be (x| - 1)

10
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Equivalent Norms

In R™ (or any finite-dimensional normed vector space), all norms
are equivalent. Roughly, up to a difference in scaling, for topo-
logical purposes there is a unique norm in R".

Theorem 3. All norms on R"™ are equivalent.

Infinite-dimensional spaces support norms that are not equiva-
lent. For example, on C([0,1]), let f,, be the function

1—nt ifte [0,% \
0 ifte (2,1

fn(t) = {

T hen

1
Ifalls _ 2 _ 1

— 0
[frllo 1 2n
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W W = Sup Ufalia = 5etai)s - 3
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Metrics and Sets

Definition 4. In a metric space (X, d), a subset S C X is bounded

if 3z € X, 8 € R such thatVs € S, d(s,z) < 8. = _ih .
/ /
{
In a metric space (X,d), define \ X J
- T
Be(z) = {ye€ X :d(y,z) < e} T Re (<)

Woper? ball with center z and radius e
{ye X :d(y,z) <¢&}
N d// : .

— " closed ball with center x and radius ¢

2 Qe x|

Be[x]



Metrics and Sets

We can use the metric d to define a generalization of “radius’.
In a metric space (X,d), define the diameter of a subset S C X
by

diam (S) = sup{d(s,s’) : s,s" € S}

Similarly, we can define the distance from a point to a set, and
distance between sets, as follows: A

d(A,z) = infd(a,x)
acA
d(A,B) = inf d(B,a)

acA
= inf{d(a,b) :a € A,b € B}

But d(A, B) is not a metric.

14



Convergence of Sequences

Definition 5. Let (X,d) be a metric space. A sequence {xn}
converges to x (written x, — x© or liMp—coc xp = x) if

Ve >0 dN(e) e N s.t. n> N(e) = d(xn,x) < ¢

Notice that this is exactly the same as the definition of con-
vergence of a sequence of real numbers, except we replace the
standard measure of distance |- | in R by the general metric d.

15






Yoy % I | = dlx

A (5en M < g N
Uniqueness of Limits

Theorem 4 (Uniqueness of Limits). In a metric space (X,d), if

xn — x and x, — x', then x = «'.

/ \
/ x |
N A e
I~ A d / : \
\ \ \ k f\ J(\V(ﬂga o T T (xéx)
\ au K
\ J \\-« N R | €
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Proof. Suppose {z,} is a sequence in X, xp, — x, Tn — 2, x Z .

16



Since x # «/, d(z,z’) > 0. Let

_ d(z,2')
2
Then there exist N(¢) and N'(e) such that

N O

€

n> N(e) = dlxp,x) <e X ™ %
n>N(e) = dlan2)<e Ko™ ><-!

Choose

n > max{N(e), N'(¢)}
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T hen

d(z, zn) + d(zn, )
e+e

2¢e

d(z,z")

d(z,2") < d(z,z")

d(z,z")

ANVA

a contradiction.
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Cluster Points

Definition 6. An element c is a cluster point of a sequence {zn}

in a metric space (X,d) ifVe >0, {n:xz, € Bs(c)} is an infinite
set. Equivalently,

Ve >0,N € N dn > N s.t. zn, € Be(c)

Example:

1 -1 if neven
Ln — .
" L if n odd
For n large and odd, =z, is close to zero; for n large and even,

Tn 1S Close to one. The sequence does not converge; the set of
cluster points is {0, 1}.

V\O&\-& U\,Q“’\J-e'f\
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Subsequences

If {zn} is a sequence and n; < np <nz < --- then {xy, } is called
a subsequence. ( 2)@,\/\}

Note that a subsequence is formed by taking some of the ele-
ments of the parent sequence, in the same order.

Example: z, = %, so {zp} = <1,%,%,...). If n, = 2k, then

— (1 11
fond = (5 3.3,.).

19
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Cluster Points and Subsequences

Theorem 5 (2.4 in De La Fuente, plus ...). Let (X,d) be a
metric space, ¢ € X, and {xzn} a sequence in X. Then c is a
cluster point of {zn} if and only if there is a subsequence {xn, }
such that limg_, xn, = c.

Proof. Suppose c is a cluster point of {x,}. We inductively con-
struct a subsequence that converges to c¢. For kK =1,
{n : xn € B1(c)} is infinite, so nonempty; let

ni1 = min{n : z, € B1(c)}

Now, suppose we have chosen n1 < no < -+ < ng such that
Tn,; € Bi(c) for j=1,...k
J

20



{n:xn € B 1 (c)} is infinite, so it contains at least one element
E+1

bigger than ng, so let

Ng41 = min {n ' n > ng, Tn € BL(C)}
k+1
Thus, we have chosen n; <np <--- <mng <ngyp such that
Tn, € Bi(c) forj=1,...,kk+1
J

Thus, by induction, we obtain a subsequence {zn,} such that

Q)\,C‘L,\_\;\"_ BLP\L‘Q) c Lny, € B%(C)
Given any ¢ > 0, by the Archimedean property, there exists
N(e) > 1/e.

k> N(e) = xn, € Bi(c)
k

(<N =
R O T 7

\
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Conversely, suppose that there is a subsequence {z,, } converging
to ¢. Given any € > 0, there exists K € N such that

k> K = d(on,.¢) < & = an, € Be(e) ((%n, 7 c)

T herefore,

{n:xn € Be(e)} 2 {nKk+1,"K+2: MK +3)-- -}

Since ng41 < ngyo < ng43z < ---, this set is infinite, so c is a
cluster point of {z,}. L]



Sequences in R and R™

Definition 7. A sequence of real numbers {z,} is increasing (de-
creasing) if 41 > on (xp41 < xn ) for all n.

Definition 8. If {x,} is a sequence of real numbers, {x,} tends
to infinity (written x, — oo or limx, = oo) if

VK e RIN(K) s.t. n>N(K) = xzp > K

Similarly define xz, — —oo or lim xz,;, = —o0.

21



Increasing and Decreasing Sequences

Theorem 6 (Theorem 3.1"). Let {z,} be an increasing (decreas-
ing) sequence of real numbers. Then

lim xp = sup{zn :n € N}
n—aoo
( im ap = inf{xy :n € N} )

In particular, the limit exists.

: « toy
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Lim Sups and Lim Infs

Consider a sequence {zp} of real numbers. Let

an = sup{xr:k>n}
= SUD{Q?n, Tp415Tp42; - - }
Bn = inf{zx : k> n}
= inf{zn, Tp41,Tp42,.-.}
_Bd./'\
Either ay, = 400 for all n, or ap € R and a1 > a» > az > ---.
~
N

Either 8, = —oco for alln, or Bp e R and 81 <GB, < (B3 < -+,
/N

23



Lim Sups and Lim Infs

Definition 9.
. . +oc0  Iif ay, = +00 for all n
Ilfrrp—>solép tn = { lima,, otherwise.
L . —oo  If B, = —oo for all n
iminten = { lim 8, otherwise.

Theorem 7. Let {z,,} be a sequence of real numbers. Then

liMmp—ooxn =7 € RU{—00,00}
&S limsup, oo Tn = liMinfp,—ooxn = 7

24



Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence
of real numbers contains an increasing subsequence or a decreas-
ing subsequence or both.
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Proof. Let

S={seN:xzs>xn Vn> s}

Either S is infinite, or S is finite.

If S is infinite, let

ni
n2

n3

NE41

min S
min (S\ {n1})
min (S'\ {n1,n2})

min (S\{nl,ng,...,



Thenny <npo <ng<---.

Tny > Tn, SiNCe€ni €S and no > ng
Tn, > Tpng  SiNCe€ mp € .S and n3 > nop

Tny, > Tnyy,  SINCe€ mp € S and ngyq > nyg

so {zn,} is a strictly decreasing subsequence of {zn}.

If S is finite and nonempty, let ny = (maxS) + 1; if S =0, let
n1 = 1. Then

ny €S so dno >njy S.t. Tn, > Tng
no € S so dnz > np S.t. xpg > Tn,

ng €S SO dngpiq1>ng st xn, > T,



so {xn,} is a (weakly) increasing subsequence of {zy}.

L]



Bolzano-Weierstrass T heorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded
sequence of real numbers contains a convergent subsequence.

Proof. Let {z,} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{zn,}. If {zn,} is increasing, then by Theorem 3.1’,

lim xp, = sup{zn, : k€ N} <sup{znp:nc N} < oo

since the sequence is bounded; since the limit is finite, the sub-
sequence converges. Similarly, if the subsequence is decreasing,
it converges. [ ]
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