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Lecture 3

Outline

1. Metric Spaces and Normed Spaces

2. Convergence of Sequences in Metric Spaces

3. Sequences in R and Rn
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Metric Spaces and Metrics

Generalize distance and length notions in Rn

Definition 1. A metric space is a pair (X, d), where X is a set

and d : X ×X → R+ a function satisfying

1. d(x, y) ≥ 0, d(x, y) = 0⇔ x = y ∀x, y ∈ X

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. triangle inequality:

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X
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y
↗ ↘

x → z

A function d : X×X → R+ satisfying 1-3 above is called a metric

on X.

A metric gives a notion of distance between elements of X.



Normed Spaces and Norms

Definition 2. Let V be a vector space over R. A norm on V is

a function ‖ · ‖ : V → R+ satisfying

1. ‖x‖ ≥ 0 ∀x ∈ V

2. ‖x‖ = 0⇔ x = 0 ∀x ∈ V

3. triangle inequality:

‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V
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x
x↗ ↘ y
0 → x + y
y ↘ ↗ x

y

4. ‖αx‖ = |α|‖x‖ ∀α ∈ R, x ∈ V

A normed vector space is a vector space over R equipped with

a norm.

A norm gives a notion of length of a vector in V .



Normed Spaces and Norms

Example: In Rn, standard notion of distance between two vec-

tors x and y measures length of difference x− y, i.e.,

d(x, y) = ‖x− y‖ =
√

∑n
i=1(xi − yi)

2.

In an abstract normed vector space, the norm can be used anal-

ogously to define a notion of distance.

Theorem 1. Let (V, ‖ · ‖) be a normed vector space. Let

d : V × V ⇒ R+ be defined by

d(v, w) = ‖v − w‖

Then (V, d) is a metric space.
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Proof. We must verify that d satisfies all the properties of a

metric.

1. Let v, w ∈ V . Then by definition, d(v, w) = ‖v − w‖ ≥ 0

(why?), and

d(v, w) = 0 ⇔ ‖v − w‖ = 0

⇔ v − w = 0

⇔ (v + (−w)) + w = w

⇔ v + ((−w) + w) = w

⇔ v + 0 = w

⇔ v = w

2. First, note that for any x ∈ V , 0 ·x = (0+0) ·x = 0 ·x+0 ·x,
so 0 · x = 0. Then 0 = 0 · x = (1− 1) · x = 1 · x + (−1) · x =



x + (−1) · x, so we have (−1) · x = (−x). Then let v,w ∈ V .

d(v, w) = ‖v −w‖

= | − 1|‖v − w‖

= ‖(−1)(v + (−w))‖

= ‖(−1)v + (−1)(−w)‖

= ‖ − v + w‖

= ‖w + (−v)‖

= ‖w − v‖

= d(w, v)



3. Let u, w, v ∈ V .

d(u, w) = ‖u− w‖

= ‖u + (−v + v)− w‖

= ‖u− v + v − w‖

≤ ‖u− v‖+ ‖v − w‖

= d(u, v) + d(v, w)

Thus d is a metric on V .



Normed Spaces and Norms

Examples

• En: n-dimensional Euclidean space.

V = R
n, ‖x‖2 = |x| =

√

√

√

√

n
∑

i=1

(xi)
2

• V = Rn, ‖x‖1 =
n
∑

i=1
|xi| (the “taxi cab” norm or L1 norm)

• V = Rn, ‖x‖∞ = max{|x1|, . . . , |xn|} (the maximum norm, or

sup norm, or L∞ norm)
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• C([0,1]), ‖f‖∞ = sup{|f(t)| : t ∈ [0,1]}

• C([0,1]), ‖f‖2 =
√

∫ 1
0 (f(t))2 dt

• C([0,1]), ‖f‖1 =
∫ 1
0 |f(t)| dt



Normed Spaces and Norms

Theorem 2 (Cauchy-Schwarz Inequality).

If v, w ∈ Rn, then





n
∑

i=1

viwi





2

≤





n
∑

i=1

v2
i









n
∑

i=1

w2
i





|v · w|2 ≤ |v|2|w|2

|v ·w| ≤ |v||w|
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Equivalent Norms

A given vector space may have many different norms: if ‖ · ‖ is

a norm on a vector space V , so are 2‖ · ‖ and 3‖ · ‖ and k‖ · ‖ for

any k > 0.

Less trivially, Rn supports many different norms as in the ex-

amples above. Different norms on a given vector space yield

different geometric properties.
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Equivalent Norms

Definition 3. Two norms ‖ · ‖ and ‖ · ‖∗ on the same vector

space V are said to be Lipschitz-equivalent ( or equivalent ) if

∃m,M > 0 s.t. ∀x ∈ V ,

m‖x‖ ≤ ‖x‖∗ ≤M‖x‖

Equivalently, ∃m, M > 0 s.t. ∀x ∈ V, x 6= 0,

m ≤
‖x‖∗

‖x‖
≤M

9



Equivalent Norms

If two norms are equivalent, then they define the same notions of

convergence and continuity. For topological purposes, equivalent

norms are indistinguishable.

For example, suppose two norms ‖ · ‖ and ‖ · ‖∗ on the vector

space V are equivalent, and fix x ∈ V . Let

Bε(x, ‖ · ‖) = {y ∈ V : ‖x− y‖ < ε}

Bε(x, ‖ · ‖∗) = {y ∈ V : ‖x− y‖∗ < ε}

Then for any ε > 0,

B ε
M

(x, ‖ · ‖) ⊆ Bε(x, ‖ · ‖∗) ⊆ B ε
m
(x, ‖ · ‖)
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Equivalent Norms

In Rn (or any finite-dimensional normed vector space), all norms

are equivalent. Roughly, up to a difference in scaling, for topo-

logical purposes there is a unique norm in Rn.

Theorem 3. All norms on Rn are equivalent.

Infinite-dimensional spaces support norms that are not equiva-

lent. For example, on C([0,1]), let fn be the function

fn(t) =







1− nt if t ∈
[

0, 1
n

]

0 if t ∈
(

1
n,1

]

Then

‖fn‖1
‖fn‖∞

=
1
2n

1
=

1

2n
→ 0
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Metrics and Sets

Definition 4. In a metric space (X, d), a subset S ⊆ X is bounded

if ∃x ∈ X, β ∈ R such that ∀s ∈ S, d(s, x) ≤ β.

In a metric space (X, d), define

Bε(x) = {y ∈ X : d(y, x) < ε}

= open ball with center x and radius ε

Bε[x] = {y ∈ X : d(y, x) ≤ ε}

= closed ball with center x and radius ε
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Metrics and Sets

We can use the metric d to define a generalization of “radius”.

In a metric space (X,d), define the diameter of a subset S ⊆ X

by

diam (S) = sup{d(s, s′) : s, s′ ∈ S}

Similarly, we can define the distance from a point to a set, and

distance between sets, as follows:

d(A, x) = inf
a∈A

d(a, x)

d(A, B) = inf
a∈A

d(B, a)

= inf{d(a, b) : a ∈ A, b ∈ B}

But d(A, B) is not a metric.
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Convergence of Sequences

Definition 5. Let (X, d) be a metric space. A sequence {xn}

converges to x (written xn → x or limn→∞ xn = x) if

∀ε > 0 ∃N(ε) ∈ N s.t. n > N(ε)⇒ d(xn, x) < ε

Notice that this is exactly the same as the definition of con-

vergence of a sequence of real numbers, except we replace the

standard measure of distance | · | in R by the general metric d.
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Uniqueness of Limits

Theorem 4 (Uniqueness of Limits). In a metric space (X,d), if

xn → x and xn → x′, then x = x′.

·x
· ↓ ε

xn · ↓

· · · ·
^
_ ε = d(x,x′)

2
· ↑
· ↑ ε
·x′

Proof. Suppose {xn} is a sequence in X, xn → x, xn → x′, x 6= x′.
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Since x 6= x′, d(x, x′) > 0. Let

ε =
d(x, x′)

2

Then there exist N(ε) and N ′(ε) such that

n > N(ε) ⇒ d(xn, x) < ε

n > N ′(ε) ⇒ d(xn, x′) < ε

Choose

n > max{N(ε),N ′(ε)}



Then

d(x, x′) ≤ d(x, xn) + d(xn, x′)

< ε + ε

= 2ε

= d(x, x′)

d(x, x′) < d(x, x′)

a contradiction.



·x
· ↓ ε

xn · ↓

· · · ·
^
_ ε = d(x,x′)

2
· ↑
· ↑ ε
·x′
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Cluster Points

Definition 6. An element c is a cluster point of a sequence {xn}

in a metric space (X, d) if ∀ε > 0, {n : xn ∈ Bε(c)} is an infinite

set. Equivalently,

∀ε > 0, N ∈ N ∃n > N s.t. xn ∈ Bε(c)

Example:

xn =

{

1− 1
n if n even

1
n if n odd

For n large and odd, xn is close to zero; for n large and even,

xn is close to one. The sequence does not converge; the set of

cluster points is {0,1}.
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Subsequences

If {xn} is a sequence and n1 < n2 < n3 < · · · then {xnk} is called

a subsequence.

Note that a subsequence is formed by taking some of the ele-

ments of the parent sequence, in the same order.

Example: xn = 1
n, so {xn} =

(

1, 1
2, 1

3, . . .
)

. If nk = 2k, then

{xnk} =
(

1
2, 1

4, 1
6, . . .

)

.
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Cluster Points and Subsequences

Theorem 5 (2.4 in De La Fuente, plus ...). Let (X, d) be a

metric space, c ∈ X, and {xn} a sequence in X. Then c is a

cluster point of {xn} if and only if there is a subsequence {xnk}

such that limk→∞ xnk = c.

Proof. Suppose c is a cluster point of {xn}. We inductively con-

struct a subsequence that converges to c. For k = 1,

{n : xn ∈ B1(c)} is infinite, so nonempty; let

n1 = min{n : xn ∈ B1(c)}

Now, suppose we have chosen n1 < n2 < · · · < nk such that

xnj ∈ B1
j
(c) for j = 1, . . . , k
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{n : xn ∈ B 1
k+1

(c)} is infinite, so it contains at least one element

bigger than nk, so let

nk+1 = min

{

n : n > nk, xn ∈ B 1
k+1

(c)
}

Thus, we have chosen n1 < n2 < · · · < nk < nk+1 such that

xnj ∈ B1
j
(c) for j = 1, . . . , k, k + 1

Thus, by induction, we obtain a subsequence {xnk} such that

xnk ∈ B1
k
(c)

Given any ε > 0, by the Archimedean property, there exists

N(ε) > 1/ε.

k > N(ε) ⇒ xnk ∈ B1
k
(c)

⇒ xnk ∈ Bε(c)



so

xnk → c as k →∞

Conversely, suppose that there is a subsequence {xnk} converging

to c. Given any ε > 0, there exists K ∈ N such that

k > K ⇒ d(xnk, c) < ε⇒ xnk ∈ Bε(c)

Therefore,

{n : xn ∈ Bε(c)} ⊇ {nK+1, nK+2, nK+3, . . .}

Since nK+1 < nK+2 < nK+3 < · · · , this set is infinite, so c is a

cluster point of {xn}.



Sequences in R and R
m

Definition 7. A sequence of real numbers {xn} is increasing (de-

creasing) if xn+1 ≥ xn ( xn+1 ≤ xn ) for all n.

Definition 8. If {xn} is a sequence of real numbers, {xn} tends

to infinity (written xn →∞ or limxn =∞) if

∀K ∈ R ∃N(K) s.t. n > N(K)⇒ xn > K

Similarly define xn → −∞ or limxn = −∞.
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Increasing and Decreasing Sequences

Theorem 6 (Theorem 3.1’).Let {xn} be an increasing (decreas-

ing) sequence of real numbers. Then

lim
n→∞

xn = sup{xn : n ∈ N}

( lim
n→∞

xn = inf{xn : n ∈ N} )

In particular, the limit exists.
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Lim Sups and Lim Infs

Consider a sequence {xn} of real numbers. Let

αn = sup{xk : k ≥ n}

= sup{xn, xn+1, xn+2, . . .}

βn = inf{xk : k ≥ n}

= inf{xn, xn+1, xn+2, . . .}

Either αn = +∞ for all n, or αn ∈ R and α1 ≥ α2 ≥ α3 ≥ · · · .

Either βn = −∞ for all n, or βn ∈ R and β1 ≤ β2 ≤ β3 ≤ · · · .
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Lim Sups and Lim Infs

Definition 9.

lim sup
n→∞

xn =

{

+∞ if αn = +∞ for all n
limαn otherwise.

lim inf
n→∞

xn =

{

−∞ if βn = −∞ for all n
limβn otherwise.

Theorem 7. Let {xn} be a sequence of real numbers. Then

limn→∞ xn = γ ∈ R ∪ {−∞,∞}
⇔ limsupn→∞ xn = lim infn→∞ xn = γ
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Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence

of real numbers contains an increasing subsequence or a decreas-

ing subsequence or both.

◦ ← ← ← ← ← ← ← ← ← ← ← ← S
• • • • ◦ ← ← ← ← ← ← ← ← U
• • • • • ◦ ← ← ← N

• • •
•

25



Proof. Let

S = {s ∈ N : xs > xn ∀n > s}

Either S is infinite, or S is finite.

If S is infinite, let

n1 = minS

n2 = min (S \ {n1})

n3 = min (S \ {n1, n2})
...

nk+1 = min (S \ {n1, n2, . . . , nk})



Then n1 < n2 < n3 < · · · .

xn1 > xn2 since n1 ∈ S and n2 > n1

xn2 > xn3 since n2 ∈ S and n3 > n2
...

xnk > xnk+1 since nk ∈ S and nk+1 > nk
...

so {xnk} is a strictly decreasing subsequence of {xn}.

If S is finite and nonempty, let n1 = (maxS) + 1; if S = ∅, let
n1 = 1. Then

n1 6∈ S so ∃n2 > n1 s.t. xn2 ≥ xn1

n2 6∈ S so ∃n3 > n2 s.t. xn3 ≥ xn2
...

nk 6∈ S so ∃nk+1 > nk s.t. xnk+1 ≥ xnk
...



so {xnk} is a (weakly) increasing subsequence of {xn}.



Bolzano-Weierstrass Theorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded

sequence of real numbers contains a convergent subsequence.

Proof. Let {xn} be a bounded sequence of real numbers. By the

Rising Sun Lemma, find an increasing or decreasing subsequence

{xnk}. If {xnk} is increasing, then by Theorem 3.1’,

limxnk = sup{xnk : k ∈ N} ≤ sup{xn : n ∈ N} <∞

since the sequence is bounded; since the limit is finite, the sub-

sequence converges. Similarly, if the subsequence is decreasing,

it converges.
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