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Lecture 4

Outline

1. Open and Closed Sets

2. Continuity in Metric Spaces
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Open and Closed Sets

Definition 1. Let (X, d) be a metric space. A set A ⊆ X is open

if

∀x ∈ A ∃ε > 0 s.t. Bε(x) ⊆ A

A set C ⊆ X is closed if X \ C is open.
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Open and Closed Sets

Example: (a, b) is open in the metric space E
1 (R with the usual

Euclidean metric). Given x ∈ (a, b), a < x < b. Let

ε = min{x − a, b − x} > 0

Then

y ∈ Bε(x) ⇒ y ∈ (x − ε, x + ε)

⊆ (x − (x − a), x + (b − x))

= (a, b)

so Bε(x) ⊆ (a, b), so (a, b) is open.

Notice that ε depends on x; in particular, ε gets smaller as x

nears the boundary of the set.
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Open and Closed Sets

Example: In E1, [a, b] is closed. R \ [a, b] = (−∞, a) ∪ (b,∞) is a

union of two open sets, which must be open.

Example: In the metric space X = [0,1], [0,1] is open. With

[0,1] as the underlying metric space,

Bε(0) = {x ∈ [0,1] : |x − 0| < ε} = [0, ε)

Thus, openness and closedness depend on the underlying metric

space as well as on the set.
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Open and Closed Sets

Example: Most sets are neither open nor closed. For example,

in E1, [0,1] ∪ (2,3) is neither open nor closed.

Example: An open set may consist of a single point. For ex-

ample, if X = N and d(m, n) = |m − n|, then

B1/2(1) = {m ∈ N : |m − 1| < 1/2} = {1}
Since 1 is the only element of the set {1} and B1/2(1) = {1} ⊆
{1}, the set {1} is open.
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Open and Closed Sets

Example: In any metric space (X, d) both ∅ and X are open,

and both ∅ and X are closed.

To see that ∅ is open, note that the statement

∀x ∈ ∅ ∃ε > 0 Bε(x) ⊆ ∅
is vacuously true since there aren’t any x ∈ ∅. To see that X is

open, note that since Bε(x) is by definition {z ∈ X : d(z, x) < ε},
it is trivially contained in X.

Since ∅ is open, X is closed; since X is open, ∅ is closed.
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Open and Closed Sets

Example: Open balls are open sets.

Suppose y ∈ Bε(x). Then d(x, y) < ε. Let δ = ε − d(x, y) > 0. If

d(z, y) < δ, then

d(z, x) ≤ d(z, y) + d(y, x)

< δ + d(x, y)

= ε − d(x, y) + d(x, y)

= ε

so Bδ(y) ⊆ Bε(x), so Bε(x) is open.
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Open and Closed Sets

Theorem 1 (Thm. 4.2). Let (X, d) be a metric space. Then

1. ∅ and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable)

collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof. 1. We have already shown this.
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2. Suppose {Aλ}λ∈Λ is a collection of open sets.

x ∈
⋃

λ∈Λ

Aλ ⇒ ∃λ0 ∈ Λ s.t. x ∈ Aλ0

⇒ ∃ε > 0 s.t. Bε(x) ⊆ Aλ0
⊆

⋃

λ∈Λ

Aλ

so ∪λ∈ΛAλ is open.

3. Suppose A1, . . . , An ⊆ X are open sets. If x ∈ ∩n
i=1Ai, then

x ∈ A1, x ∈ A2, . . . , x ∈ An

so

∃ε1 > 0, . . . , εn > 0 s.t. Bε1(x) ⊆ A1, . . . , Bεn(x) ⊆ An



Let∗

ε = min{ε1, . . . , εn} > 0

Then

Bε(x) ⊆ Bε1(x) ⊆ A1, . . . , Bε(x) ⊆ Bεn(x) ⊆ An

so

Bε(x) ⊆
n
⋂

i=1

Ai

which proves that ∩n
i=1Ai is open.

∗Note this is where we need the fact that we are taking a finite intersection.
The infimum of an infinite set of positive numbers could be zero. And the
intersection of an infinite collection of open sets need not be open.



Interior, Closure, Exterior and Boundary

Definition 2. • The interior of A, denoted intA, is the largest

open set contained in A (the union of all open sets contained

in A).

• The closure of A, denoted Ā, is the smallest closed set con-

taining A (the intersection of all closed sets containing A)

• The exterior of A, denoted extA, is the largest open set

contained in X \ A.

• The boundary of A, denoted ∂A = (X \ A) ∩ Ā
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Interior, Closure, Exterior and Boundary

Example: Let A = [0,1] ∪ (2,3). Then

intA =

Ā =

extA = int (X \ A)

=

∂A = (X \ A) ∩ Ā

=

=
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Sequences and Closed Sets

Theorem 2 (Thm. 4.13). A set A in a metric space (X, d) is

closed if and only if

{xn} ⊂ A,xn → x ∈ X ⇒ x ∈ A

Proof. Suppose A is closed. Then X \ A is open. Consider a

convergent sequence xn → x ∈ X, with xn ∈ A for all n. If x 6∈ A,

x ∈ X \A, so there is some ε > 0 such that Bε(x) ⊆ X \A (why?).

Since xn → x, there exists N(ε) such that

n > N(ε) ⇒ xn ∈ Bε(x)

⇒ xn ∈ X \ A

⇒ xn 6∈ A
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contradiction. Therefore,

{xn} ⊂ A,xn → x ∈ X ⇒ x ∈ A
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Conversely, suppose

{xn} ⊂ A,xn → x ∈ X ⇒ x ∈ A

We need to show that A is closed, i.e. X \ A is open. Suppose

not, so X \A is not open. Then there exists x ∈ X \A such that

for every ε > 0,

Bε(x) 6⊆ X \ A

so there exists y ∈ Bε(x) such that y 6∈ X \A. Then y ∈ A, hence

Bε(x)
⋂

A 6= ∅
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Construct a sequence {xn} as follows: for each n, choose

xn ∈ B1
n
(x) ∩ A

Given ε > 0, we can find N(ε) such that N(ε) > 1
ε by the

Archimedean Property, so n > N(ε) ⇒ 1
n < 1

N(ε)
< ε, so xn → x.

Then {xn} ⊆ A, xn → x, so x ∈ A, contradiction. Therefore,

X \ A is open, so A is closed.



Continuity in Metric Spaces

Definition 3. Let (X, d) and (Y, ρ) be metric spaces. A function

f : X → Y is continuous at a point x0 ∈ X if

∀ε > 0 ∃δ(x0, ε) > 0 s.t. d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε

f is continuous if it is continuous at every element of its domain.

Note that δ can depend on x0 and ε.
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Continuity in Metric Spaces

Continuity at x0 requires:

• f(x0) is defined; and

• either

– x0 is an isolated point of X, i.e. ∃ε > 0 s.t. Bε(x0) = {x0};
or

– limx→x0 f(x) exists and equals f(x0)
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Continuity in Metric Spaces

Suppose f : X → Y and A ⊆ Y . Define

f−1(A) = {x ∈ X : f(x) ∈ A}

Theorem 3 (Theorem 6.14). Let (X, d) and (Y, ρ) be metric

spaces, and f : X → Y . Then f is continuous if and only if

f−1(A) is open in X ∀A ⊆ Y s.t. A is open in Y

Alternatively, f is continuous ⇐⇒ f−1(C) is closed in X for

every closed C ⊆ Y .
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Proof. Suppose f is continuous. Given A ⊆ Y , A open, we must

show that f−1(A) is open in X. Suppose x0 ∈ f−1(A). Let

y0 = f(x0) ∈ A. Since A is open, we can find ε > 0 such that

Bε(y0) ⊆ A. Since f is continuous, there exists δ > 0 such that

d(x, x0) < δ ⇒ ρ(f(x), f(x0)) < ε

⇒ f(x) ∈ Bε(y0)

⇒ f(x) ∈ A

⇒ x ∈ f−1(A)

so Bδ(x0) ⊆ f−1(A), so f−1(A) is open.
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Conversely, suppose

f−1(A) is open in X ∀A ⊆ Y s.t. A is open in Y

We need to show that f is continuous. Let x0 ∈ X, ε > 0. Let

A = Bε(f(x0)). A is an open ball, hence an open set, so f−1(A)

is open in X. x0 ∈ f−1(A), so there exists δ > 0 such that

Bδ(x0) ⊆ f−1(A).

d(x, x0) < δ ⇒ x ∈ Bδ(x0)

⇒ x ∈ f−1(A)

⇒ f(x) ∈ A(= Bε(f(x0)))

⇒ ρ(f(x), f(x0)) < ε
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Thus, we have shown that f is continuous at x0; since x0 is an

arbitrary point in X, f is continuous.



Continuity in Metric Spaces

The composition of continuous functions is continuous:

Theorem 4 (Slightly weaker version of Thm. 6.10).Let (X, dX),

(Y, dY ) and (Z, dZ) be metric spaces. If f : X → Y and g : Y → Z

are continuous, then g ◦ f : X → Z is continuous.

Proof. Suppose A ⊆ Z is open. Since g is continuous, g−1(A) is

open in Y ; since f is continuous, f−1(g−1(A)) is open in X.

We claim that

f−1(g−1(A)) = (g ◦ f)−1(A)
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Observe

x ∈ f−1(g−1(A)) ⇔ f(x) ∈ g−1(A)

⇔ g(f(x)) ∈ A

⇔ (g ◦ f)(x) ∈ A

⇔ x ∈ (g ◦ f)−1(A)

which establishes the claim. This shows that (g◦f)−1(A) is open

in X, so g ◦ f is continuous.



Uniform Continuity

Definition 4 (Uniform Continuity). Let (X, d) and (Y, ρ) be met-

ric spaces. A function f : X → Y is uniformly continuous if

∀ε > 0 ∃δ(ε) > 0 s.t. ∀x0 ∈ X, d(x, x0) < δ(ε) ⇒ ρ(f(x), f(x0)) < ε

Notice the important contrast with continuity: f is continuous

means

∀x0 ∈ X, ε > 0 ∃δ(x0, ε) > 0 s.t. d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε
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Uniform Continuity

Example: Consider

f(x) =
1

x
, x ∈ (0,1]

f is continuous (why?). We will show that f is not uniformly

continuous.
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Fix ε > 0 and x0 ∈ (0,1]. If x = x0
1+εx0

, then

1 + εx0 > 1

x =
x0

1 + εx0
< x0

1

x
− 1

x0
> 0

|f(x) − f(x0)| =

∣

∣

∣

∣

∣

1

x
− 1

x0

∣

∣

∣

∣

∣

=
1

x
− 1

x0

=
1 + εx0

x0
− 1

x0

=
εx0

x0
= ε
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An easier estimate:

Notice that 1
x is decreasing on (0,1), so

x < x0 ⇒ 1

x
− 1

x0
> 0

Now look for the point x < x0 such that

1

x
− 1

x0
= ε

1

x
=

1

x0
+ ε

=
1 + εx0

x0

⇒ x =
x0

1 + εx0
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Note for x′ > 0, x′ < x ⇒ f(x′) − f(x0) > ε

Thus, δ(x0, ε) must be chosen small enough so that
∣

∣

∣

∣

∣

x0

1 + εx0
− x0

∣

∣

∣

∣

∣

≥ δ(x0, ε)

δ(x0, ε) ≤ x0 − x0

1 + εx0

=
ε(x0)

2

1 + εx0

< ε(x0)
2

which converges to zero as x0 → 0. So there is no δ(ε) that will

work for all x0 ∈ (0,1].



Uniform Continuity

Example: If f : R → R and f ′(x) is defined and uniformly

bounded on an interval [a, b], then f is uniformly continuous on

[a, b]. However, even a function with an unbounded derivative

may be uniformly continuous. Consider

f(x) =
√

x, x ∈ [0,1]

f is continuous (why?). We will show that f is uniformly con-

tinuous. Given ε > 0, let δ = ε2. Then given any x0 ∈ [0,1],
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|x − x0| < δ implies by the Fundamental Theorem of Calculus

|f(x) − f(x0)| =

∣

∣

∣

∣

∣

∫ x

x0

1

2
√

t
dt

∣

∣

∣

∣

∣

≤
∫ |x−x0|

0

1

2
√

t
dt

=
√

|x − x0|
<

√
δ

=

√

ε2

= ε

Thus, f is uniformly continuous on [0,1], even though f ′(x) → ∞
as x → 0.



Lipschitz Continuity

Definition 5. Let X, Y be normed vector spaces, E ⊆ X. A

function f : X → Y is Lipschitz on E if

∃K > 0 s.t. ‖f(x) − f(z)||Y ≤ K‖x − z‖X ∀x, z ∈ E

f is locally Lipschitz on E if

∀x0 ∈ E ∃ε > 0 s.t. f is Lipschitz on Bε(x0) ∩ E
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Notions of Continuity

Lipschitz continuity is stronger than either continuity or uniform

continuity:

locally Lipschitz ⇒ continuous

Lipschitz ⇒ uniformly continuous

Every C1 function is locally Lipschitz. (Recall that a function

f : Rm → Rn is said to be C1 if all its first partial derivatives

exist and are continuous.)
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Homeomorphisms

Definition 6. Let (X, d) and (Y, ρ) be metric spaces. A function

f : X → Y is called a homeomorphism if it is one-to-one, onto,

continuous, and its inverse function is continuous.

Topological properties are invariant under homeomorphism:
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Homeomorphisms

Suppose that f is a homeomorphism and U ⊂ X. Let g = f−1 :

Y → X.

y ∈ g−1(U) ⇔ g(y) ∈ U

⇔ y ∈ f(U)

U open in X ⇒ g−1(U) is open in (f(X), ρ)

⇒ f(U) is open in (f(X), ρ)

This says that (X, d) and
(

f(X), ρ|f(X)

)

are identical in terms of

properties that can be characterized solely in terms of open sets;

such properties are called “topological properties.”
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