Econ 204 2016

Lecture 6

Outline

- 1. Open Covers
- 2. Compactness
- 3. Sequential Compactness
- 4. Totally Bounded Sets
- 5. Heine-Borel Theorem
- 6. Extreme Value Theorem

Open Covers

Definition 1. A collection of sets

$$\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$$

in a metric space (X,d) is an open cover of A if U_{λ} is open for all $\lambda \in \Lambda$ and

$$\cup_{\lambda \in \Lambda} U_{\lambda} \supseteq A$$

Notice that Λ may be finite, countably infinite, or uncountable.

Compactness

Definition 2. A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other words, if $\{U_{\lambda}: \lambda \in \Lambda\}$ is an open cover of A, there exist $n \in \mathbb{N}$ and $\lambda_1, \dots, \lambda_n \in \Lambda$ such that

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

This definition does **not** say "A has a finite open cover" (fortunately, since this is vacuous...).

Instead for **any** arbitrary open cover you must specify a finite subcover of this **given** open cover.

Compactness

Example: (0,1] is not compact in E^1 .

To see this, let

$$\mathcal{U} = \left\{ U_m = \left(\frac{1}{m}, 2\right) : m \in \mathbf{N} \right\}$$

Then

$$\cup_{m \in \mathbb{N}} U_m = (0,2) \supset (0,1]$$

Given any finite subset $\{U_{m_1}, \ldots, U_{m_n}\}$ of \mathcal{U} , let

$$m = \max\{m_1, \dots, m_n\}$$

Then

$$\bigcup_{i=1}^{n} U_{m_i} = U_m = \left(\frac{1}{m}, 2\right) \not\supseteq (0, 1]$$

So (0,1] is not compact.

What about [0,1]? This argument doesn't work...

Compactness

Example: $[0, \infty)$ is closed but not compact.

To see that $[0,\infty)$ is not compact, let

$$U = \{U_m = (-1, m) : m \in \mathbb{N}\}\$$

Given any finite subset

$$\{U_{m_1},\ldots,U_{m_n}\}$$

of \mathcal{U} , let

$$m = \max\{m_1, \dots, m_n\}$$

Then

$$U_{m_1} \cup \cdots \cup U_{m_n} = (-1, m) \not\supseteq [0, \infty)$$

Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact metric space (X,d) is compact.

Proof. Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of A. In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do this:

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A)$$

$$\Lambda' = \Lambda \cup \{\lambda_0\}, \ U_{\lambda_0} = X \setminus A$$

We choose the first path, and let

$$U_{\lambda}' = U_{\lambda} \cup (X \setminus A)$$

Since A is closed, $X \setminus A$ is open; since U_{λ} is open, so is U'_{λ} .

Then $x \in X \Rightarrow x \in A$ or $x \in X \setminus A$. If $x \in A$, $\exists \lambda \in \Lambda$ s.t. $x \in U_{\lambda} \subseteq U_{\lambda}'$. If instead $x \in X \setminus A$, then $\forall \lambda \in \Lambda$, $x \in U_{\lambda}'$. Therefore, $X \subseteq \cup_{\lambda \in \Lambda} U_{\lambda}'$, so $\{U_{\lambda}' : \lambda \in \Lambda\}$ is an open cover of X.

Since X is compact,

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda \text{ s.t. } X \subseteq U'_{\lambda_1} \cup \dots \cup U'_{\lambda_n}$$

Then

$$\begin{array}{ll} a \in A & \Rightarrow & a \in X \\ & \Rightarrow & a \in U'_{\lambda_i} \text{ for some } i \\ & \Rightarrow & a \in U_{\lambda_i} \cup (X \setminus A) \\ & \Rightarrow & a \in U_{\lambda_i} \end{array}$$

SO

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

Thus A is compact.

Compactness

closed \Rightarrow compact, but the converse is true:

Theorem 2 (Thm. 8.15). If A is a compact subset of the metric space (X, d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed. Then $X \setminus A$ is not open, so we can find a point $x \in X \setminus A$ such that, for every $\varepsilon > 0$, $A \cap B_{\varepsilon}(x) \neq \emptyset$, and hence $A \cap B_{\varepsilon}[x] \neq \emptyset$. For $n \in \mathbb{N}$, let

$$U_n = X \setminus B_{\frac{1}{n}}[x]$$

Each U_n is open, and

$$\cup_{n\in\mathbf{N}}U_n=X\setminus\{x\}\supseteq A$$

since $x \notin A$. Therefore, $\{U_n : n \in \mathbb{N}\}$ is an open cover for A. Since A is compact, there is a finite subcover $\{U_{n_1}, \ldots, U_{n_k}\}$. Let $n = \max\{n_1, \ldots, n_k\}$. Then

$$U_n = X \setminus B_{\frac{1}{n}}[x]$$

$$\supseteq X \setminus B_{\frac{1}{n_j}}[x] \ (j = 1, \dots, k)$$

$$U_n \supseteq \bigcup_{j=1}^k U_{n_j}$$

$$\supseteq A$$

But $A \cap B_{\frac{1}{n}}[x] \neq \emptyset$, so $A \not\subseteq X \setminus B_{\frac{1}{n}}[x] = U_n$, a contradiction which proves that A is closed.

Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially compact if every sequence of elements of A contains a convergent subsequence whose limit lies in A.

Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d) is compact if and only if it is sequentially compact.

Proof. Suppose A is compact. We will show that A is sequentially compact.

If not, we can find a sequence $\{x_n\}$ of elements of A such that no subsequence converges to **any** element of A. Recall that a is a cluster point of the sequence $\{x_n\}$ means that

$$\forall \varepsilon > 0 \quad \{n : x_n \in B_{\varepsilon}(a)\} \text{ is infinite }$$

and this is equivalent to the statement that there is a subsequence $\{x_{n_k}\}$ converging to a. Thus, **no** element $a \in A$ can be a cluster point for $\{x_n\}$, and hence

$$\forall a \in A \ \exists \varepsilon_a > 0 \text{ s.t. } \{n : x_n \in B_{\varepsilon_a}(a)\} \text{ is finite}$$
 (1)

Then

$$\{B_{\varepsilon_a}(a): a \in A\}$$

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact, there is a finite subcover

$$\left\{B_{\varepsilon_{a_1}}(a_1),\ldots,B_{\varepsilon_{a_m}}(a_m)\right\}$$

Then

$$\mathbf{N} = \{n : x_n \in A\}
\subseteq \{n : x_n \in (B_{\varepsilon_{a_1}}(a_1) \cup \cdots \cup B_{\varepsilon_{a_m}}(a_m))\}
= \{n : x_n \in B_{\varepsilon_{a_1}}(a_1)\} \cup \cdots \cup \{n : x_n \in B_{\varepsilon_{a_m}}(a_m)\}$$

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite, a contradiction which proves that A is sequentially compact.

For the converse, see de la Fuente.	

Definition 4. A set A in a metric space (X,d) is totally bounded if, for every $\varepsilon > 0$,

$$\exists x_1, \dots, x_n \in A \text{ s.t. } A \subseteq \bigcup_{i=1}^n B_{\varepsilon}(x_i)$$

Example: Take A = [0,1] with the Euclidean metric. Given $\varepsilon > 0$, let $n > \frac{1}{\varepsilon}$. Then we may take

$$x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \dots, x_{n-1} = \frac{n-1}{n}$$

Then $[0,1] \subset \bigcup_{k=1}^{n-1} B_{\varepsilon}(\frac{k}{n}).$

Example: Consider X = [0, 1] with the discrete metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

X is not totally bounded. To see this, take $\varepsilon = \frac{1}{2}$. Then for any x, $B_{\varepsilon}(x) = \{x\}$, so given any finite set x_1, \ldots, x_n ,

$$\bigcup_{i=1}^n B_{\varepsilon}(x_i) = \{x_1, \dots, x_n\} \not\supseteq [0, 1]$$

However, X is bounded because $X = B_2(0)$.

Note that any totally bounded set in a metric space (X,d) is also bounded. To see this, let $A \subset X$ be totally bounded. Then $\exists x_1, \ldots, x_n \in A$ such that $A \subset B_1(x_1) \cup \cdots \cup B_1(x_n)$. Let

$$M = 1 + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)$$

Then $M < \infty$. Now fix $a \in A$. We claim $d(a, x_1) < M$. To see this, notice that there is some $n_a \in \{1, ..., n\}$ for which $a \in B_1(x_{n_a})$. Then

$$d(a, x_1) \leq d(a, x_{n_a}) + \sum_{k=1}^{n} d(x_k, x_{k+1})$$

$$< 1 + \sum_{k=1}^{n} d(x_k, x_{k+1})$$

$$= M$$

Remark 4. Every compact subset of a metric space is totally bounded:

Fix ε and consider the open cover

$$\mathcal{U}_{\varepsilon} = \{B_{\varepsilon}(a) : a \in A\}$$

If A is compact, then every open cover of A has a finite subcover; in particular, $\mathcal{U}_{\varepsilon}$ must have a finite subcover, but this just says that A is totally bounded.

Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). Let A be a subset of a metric space (X,d). Then A is compact if and only if it is complete and totally bounded.

Proof. Here is a sketch of the proof; see de la Fuente for details. Compact implies totally bounded (Remark 4). Suppose $\{x_n\}$ is a Cauchy sequence in A. Since A is compact, A is sequentially compact, hence $\{x_n\}$ has a convergent subsequence $x_{n_k} \to a \in A$. Since $\{x_n\}$ is Cauchy, $x_n \to a$ (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let $\{x_n\}$ be a sequence in A. Because A is totally bounded, we can extract a Cauchy subsequence $\{x_{n_k}\}$ (why?). Because A is complete, $x_{n_k} \to a$ for some $a \in A$, which shows that A is sequentially compact and hence compact.

Compact ← Closed and Totally Bounded

Putting these together:

Corollary 1. Let A be a subset of a complete metric space (X, d). Then A is compact if and only if A is closed and totally bounded.

 $A ext{ compact } \Rightarrow A ext{ complete and totally bounded}$

 \Rightarrow A closed and totally bounded

A closed and totally bounded \Rightarrow A complete and totally bounded

 \Rightarrow A compact

Example: [0,1] is compact in \mathbf{E}^1 .

Note: compact \Rightarrow closed and bounded, but converse need not be true.

E.g. [0,1] with the discrete metric.

Heine-Borel Theorem - ${f E}^1$

Theorem 6 (Thm. 8.19, Heine-Borel). If $A \subseteq E^1$, then A is compact if and only if A is closed and bounded.

Proof. Let A be a closed, bounded subset of \mathbf{R} . Then $A\subseteq [a,b]$ for some interval [a,b]. Let $\{x_n\}$ be a sequence of elements of [a,b]. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ contains a convergent subsequence with limit $x\in\mathbf{R}$. Since [a,b] is closed, $x\in[a,b]$. Thus, we have shown that [a,b] is sequentially compact, hence compact. A is a closed subset of [a,b], hence A is compact.

Conversely, if A is compact, A is closed and bounded.

Heine-Borel Theorem - \mathbf{E}^n

Theorem 7 (Thm. 8.20, Heine-Borel). If $A \subseteq \mathbf{E}^n$, then A is compact if and only if A is closed and bounded.

Proof. See de la Fuente.

Example: The closed interval

$$[a,b] = \{x \in \mathbf{R}^n : a_i \le x_i \le b_i \text{ for each } i = 1,\ldots,n\}$$

is compact in \mathbf{E}^n for any $a, b \in \mathbf{R}^n$.

Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,ρ) be metric spaces. If $f: X \to Y$ is continuous and C is a compact subset of (X,d), then f(C) is compact in (Y,ρ) .

Proof. There is a proof in de la Fuente using sequential compactness. Here we give an alternative proof using directly the open cover definition of compactness.

Let $\{U_{\lambda}: \lambda \in \Lambda\}$ be an open cover of f(C). For each point $c \in C$, $f(c) \in f(C)$ so $f(c) \in U_{\lambda_c}$ for some $\lambda_c \in \Lambda$, that is, $c \in f^{-1}\left(U_{\lambda_c}\right)$. Thus the collection $\left\{f^{-1}\left(U_{\lambda}\right): \lambda \in \Lambda\right\}$ is a cover of C; in addition, since f is continuous, each set $f^{-1}\left(U_{\lambda}\right)$ is

open in C, so $\left\{f^{-1}\left(U_{\lambda}\right):\lambda\in\Lambda\right\}$ is an open cover of C. Since C is compact, there is a finite subcover

$$\left\{ f^{-1}\left(U_{\lambda_{1}}\right),\ldots,f^{-1}\left(U_{\lambda_{n}}\right)\right\}$$

of C. Given $x \in f(C)$, there exists $c \in C$ such that f(c) = x, and $c \in f^{-1}(U_{\lambda_i})$ for some i, so $x \in U_{\lambda_i}$. Thus, $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is a finite subcover of f(C), so f(C) is compact.

Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a compact set in a metric space (X,d), and suppose $f: C \to \mathbf{R}$ is continuous. Then f is bounded on C and attains its minimum and maximum on C.

Proof. f(C) is compact by Theorem 8.21, hence closed and bounded. Let $M = \sup f(C)$; $M < \infty$. Then $\forall m > 0$ there exists $y_m \in f(C)$ such that

$$M - \frac{1}{m} \le y_m \le M$$

So $y_m \to M$ and $\{y_m\} \subseteq f(C)$. Since f(C) is closed, $M \in f(C)$, i.e. there exists $c \in C$ such that $f(c) = M = \sup f(C)$, so f attains its maximum at c. The proof for the minimum is similar.

Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X,d) and (Y,ρ) be metric spaces, C a compact subset of X, and $f:C \to Y$ continuous. Then f is uniformly continuous on C.

Proof. Fix $\varepsilon > 0$. We ignore X and consider f as defined on the metric space (C,d). Given $c \in C$, find $\delta(c) > 0$ such that

$$x \in C, \ d(x,c) < 2\delta(c) \Rightarrow \rho(f(x),f(c)) < \frac{\varepsilon}{2}$$

Let

$$U_c = B_{\delta(c)}(c)$$

Then

$$\{U_c:c\in C\}$$

is an open cover of C. Since C is compact, there is a finite subcover

$$\{U_{c_1},\ldots,U_{c_n}\}$$

Let

$$\delta = \min\{\delta(c_1), \dots, \delta(c_n)\}\$$

Given $x, y \in C$ with $d(x, y) < \delta$, note that $x \in U_{c_i}$ for some $i \in \{1, ..., n\}$, so $d(x, c_i) < \delta(c_i)$.

$$d(y, c_i) \leq d(y, x) + d(x, c_i)$$

$$< \delta + \delta(c_i)$$

$$\leq \delta(c_i) + \delta(c_i)$$

$$= 2\delta(c_i)$$

SO

$$\rho(f(x), f(y)) \leq \rho(f(x), f(c_i)) + \rho(f(c_i), f(y))
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}
= \varepsilon$$

which proves that f is uniformly continuous.