Econ 204 2016

Lecture 6

Outline

1. Open Covers
2. Compactness
3. Sequential Compactness
4. Totally Bounded Sets
5. Heine-Borel Theorem
6. Extreme Value Theorem
Open Covers

Definition 1. A *collection of sets* $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ in a metric space (X, d) is an open cover of A if U_{λ} is open for all $\lambda \in \Lambda$ and

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} \supseteq A$$

Notice that Λ may be finite, countably infinite, or uncountable.
Compactness

Definition 2. A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other words, if \(\{U_\lambda : \lambda \in \Lambda\} \) is an open cover of A, there exist $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_n \in \Lambda$ such that

$$A \subseteq U_{\lambda_1} \cup \cdots \cup U_{\lambda_n}$$

This definition does not say “A has a finite open cover” (fortunately, since this is vacuous...).

Instead for any arbitrary open cover you must specify a finite subcover of this given open cover.
Compactness

Example: $(0, 1]$ is not compact in \mathbb{E}^1.

To see this, let

$$\mathcal{U} = \left\{ U_m = \left(\frac{1}{m}, 2 \right) : m \in \mathbb{N} \right\}$$

Then

$$\bigcup_{m \in \mathbb{N}} U_m = (0, 2) \supset (0, 1]$$
Given any finite subset \(\{U_{m_1}, \ldots, U_{m_n}\} \) of \(\mathcal{U} \), let

\[
m = \max\{m_1, \ldots, m_n\}
\]

Then

\[
\bigcup_{i=1}^{n} U_{m_i} = U_m = \left(\frac{1}{m}, 2 \right) \not\supset (0, 1]
\]

So \((0, 1]\) is not compact.

What about \([0, 1]\)? This argument doesn’t work...
Compactness

Example: $[0, \infty)$ is closed but not compact.

To see that $[0, \infty)$ is not compact, let

$$\mathcal{U} = \{U_m = (-1, m) : m \in \mathbb{N}\}$$

Given any finite subset

$$\{U_{m_1}, \ldots, U_{m_n}\}$$

of \mathcal{U}, let

$$m = \max\{m_1, \ldots, m_n\}$$

Then

$$U_{m_1} \cup \cdots \cup U_{m_n} = (-1, m) \not\supseteq [0, \infty)$$
\(f(a), f(b) \)

\(U_1 = (-1,1) \)
\(U_2 = (-1,2) \)
\(U_3 = (-1,3) \)
Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact metric space (X, d) is compact.

Proof. Let $\{U_\lambda : \lambda \in \Lambda\}$ be an open cover of A. In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do this:

\[
U'_\lambda = U_\lambda \cup (X \setminus A) \\
\Lambda' = \Lambda \cup \{\lambda_0\}, \quad U_{\lambda_0} = X \setminus A
\]

We choose the first path, and let

\[
U'_\lambda = U_\lambda \cup (X \setminus A)
\]
$U_\lambda' = U_\lambda \cup (X \setminus A)$
Since A is closed, $X \setminus A$ is open; since U_λ is open, so is U'_λ.

Then $x \in X \Rightarrow x \in A$ or $x \in X \setminus A$. If $x \in A$, $\exists \lambda \in \Lambda$ s.t. $x \in U_\lambda \subseteq U'_\lambda$. If instead $x \in X \setminus A$, then $\forall \lambda \in \Lambda$, $x \in U'_\lambda$. Therefore, $X \subseteq \bigcup_{\lambda \in \Lambda} U'_\lambda$, so $\{U'_\lambda : \lambda \in \Lambda\}$ is an open cover of X.

Since X is compact,

$$\exists \lambda_1, \ldots, \lambda_n \in \Lambda \text{ s.t. } X \subseteq U'_\lambda_1 \cup \cdots \cup U'_\lambda_n$$

Then

$$a \in A \Rightarrow a \in X$$
$$\Rightarrow a \in U'_\lambda_i \text{ for some } i$$
$$\Rightarrow a \in U_\lambda_i \cup (X \setminus A)$$
$$\Rightarrow a \in U_\lambda_i$$
so

\[A \subseteq U_{\lambda_1} \cup \cdots \cup U_{\lambda_n} \]

Thus \(A \) is compact. \(\square \)
Compactness

closed $\not\Rightarrow$ compact, but the converse is true:

Theorem 2 (Thm. 8.15). *If A is a compact subset of the metric space (X, d), then A is closed.*

Proof. Suppose by way of contradiction that A is not closed. Then $X \setminus A$ is not open, so we can find a point $x \in X \setminus A$ such that, for every $\varepsilon > 0$, $A \cap B_\varepsilon(x) \neq \emptyset$, and hence $A \cap B_\varepsilon[x] \neq \emptyset$. For $n \in \mathbb{N}$, let

$$U_n = X \setminus B_\varepsilon^n[x]$$
$U_n = X \setminus B_{1/n}(x)$
Each U_n is open, and

$$\bigcup_{n \in \mathbb{N}} U_n = X \setminus \{x\} \supseteq A$$

since $x \notin A$. Therefore, $\{U_n : n \in \mathbb{N}\}$ is an open cover for A. Since A is compact, there is a finite subcover $\{U_{n_1}, \ldots, U_{n_k}\}$. Let $n = \max\{n_1, \ldots, n_k\}$. Then

$$U_n = X \setminus B_1^n[x]$$

$$\supseteq X \setminus B_1^n[x] (j = 1, \ldots, k)$$

$$U_n \supseteq \bigcup_{j=1}^k U_{n_j}$$

$$\supseteq A$$

But $A \cap B_1^n[x] \neq \emptyset$, so $A \not\subseteq X \setminus B_1^n[x] = U_n$, a contradiction which proves that A is closed. \qed
Sequential Compactness

Definition 3. A set A in a metric space (X, d) is sequentially compact if every sequence of elements of A contains a convergent subsequence whose limit lies in A.
Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set \(A \) in a metric space \((X, d)\) is compact if and only if it is sequentially compact.

Proof. Suppose \(A \) is compact. We will show that \(A \) is sequentially compact.

If not, we can find a sequence \(\{x_n\} \) of elements of \(A \) such that no subsequence converges to any element of \(A \). Recall that \(a \) is a cluster point of the sequence \(\{x_n\} \) means that

\[
\forall \varepsilon > 0 \quad \{n : x_n \in B_{\varepsilon}(a)\} \text{ is infinite}
\]

and this is equivalent to the statement that there is a subsequence \(\{x_{n_k}\} \) converging to \(a \). Thus, no element \(a \in A \) can be a cluster point for \(\{x_n\} \), and hence

\[
\forall a \in A \quad \exists \varepsilon_a > 0 \text{ s.t. } \{n : x_n \in B_{\varepsilon_a}(a)\} \text{ is finite} \quad (1)
\]
Then
\[\{ B_{\varepsilon_a}(a) : a \in A \} \]
is an open cover of \(A \) (if \(A \) is uncountable, it will be an uncountable open cover). Since \(A \) is compact, there is a finite subcover
\[\{ B_{\varepsilon_{a_1}}(a_1), \ldots, B_{\varepsilon_{a_m}}(a_m) \} \]
Then
\[
N = \{ n : x_n \in A \} \\
\subseteq \{ n : x_n \in (B_{\varepsilon_{a_1}}(a_1) \cup \cdots \cup B_{\varepsilon_{a_m}}(a_m)) \} \\
= \{ n : x_n \in B_{\varepsilon_{a_1}}(a_1) \} \cup \cdots \cup \{ n : x_n \in B_{\varepsilon_{a_m}}(a_m) \}
\]
so \(N \) is contained in a finite union of sets, each of which is finite by Equation (1). Thus, \(N \) must be finite, a contradiction which proves that \(A \) is sequentially compact.
For the converse, see de la Fuente.
Totally Bounded Sets

Definition 4. A set A in a metric space (X, d) is totally bounded if, for every $\varepsilon > 0$,

$$\exists x_1, \ldots, x_n \in A \text{ s.t. } A \subseteq \bigcup_{i=1}^{n} B_{\varepsilon}(x_i)$$
Totally Bounded Sets

Example: Take $A = [0,1]$ with the Euclidean metric. Given $\varepsilon > 0$, let $n > \frac{1}{\varepsilon}$. Then we may take

$$x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \ldots, x_{n-1} = \frac{n-1}{n}$$

Then $[0,1] \subset \bigcup_{k=1}^{n-1} B_\varepsilon(\frac{k}{n})$.
Totally Bounded Sets

Example: Consider $X = [0,1]$ with the discrete metric

$$d(x, y) = \begin{cases}
1 & \text{if } x \neq y \\
0 & \text{if } x = y
\end{cases}$$

X is not totally bounded. To see this, take $\varepsilon = \frac{1}{2}$. Then for any x, $B_\varepsilon(x) = \{x\}$, so given any finite set x_1, \ldots, x_n,

$$\bigcup_{i=1}^{n} B_\varepsilon(x_i) = \{x_1, \ldots, x_n\} \not\subseteq [0,1]$$

However, X is bounded because $X = B_2(0)$.
Totally Bounded Sets

Note that any totally bounded set in a metric space \((X, d)\) is also bounded. To see this, let \(A \subset X\) be totally bounded. Then \(\exists x_1, \ldots, x_n \in A\) such that \(A \subset B_1(x_1) \cup \cdots \cup B_1(x_n)\). Let

\[
M = 1 + d(x_1, x_2) + \cdots + d(x_{n-1}, x_n)
\]

Then \(M < \infty\). Now fix \(a \in A\). We claim \(d(a, x_1) < M\). To see this, notice that there is some \(n_a \in \{1, \ldots, n\}\) for which \(a \in B_1(x_{n_a})\). Then

\[
d(a, x_1) \leq d(a, x_{n_a}) + \sum_{k=1}^{n} d(x_k, x_{k+1})
\]

\[
< 1 + \sum_{k=1}^{n} d(x_k, x_{k+1})
\]

\[
= M
\]
Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally bounded:

Fix ε and consider the open cover

$$\mathcal{U}_\varepsilon = \{B_\varepsilon(a) : a \in A\}$$

If A is compact, then every open cover of A has a finite subcover; in particular, \mathcal{U}_ε must have a finite subcover, but this just says that A is totally bounded.
Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). *Let A be a subset of a metric space (X, d). Then A is compact if and only if it is complete and totally bounded.*

Proof. Here is a sketch of the proof; see de la Fuente for details. Compact implies totally bounded (Remark 4). Suppose $\{x_n\}$ is a Cauchy sequence in A. Since A is compact, A is sequentially compact, hence $\{x_n\}$ has a convergent subsequence $x_{n_k} \to a \in A$. Since $\{x_n\}$ is Cauchy, $x_n \to a$ (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let $\{x_n\}$ be a sequence in A. Because A is totally bounded, we can extract a Cauchy subsequence $\{x_{n_k}\}$ (why?). Because A is complete, $x_{n_k} \to a$ for some $a \in A$, which shows that A is sequentially compact and hence compact. \(\square\)
Compact \iff Closed and Totally Bounded

Putting these together:

Corollary 1. Let A be a subset of a complete metric space (X, d). Then A is compact if and only if A is closed and totally bounded.

\[
\begin{align*}
A \text{ compact} & \implies A \text{ complete and totally bounded} \\
& \implies A \text{ closed and totally bounded} \\
A \text{ closed and totally bounded} & \implies A \text{ complete and totally bounded} \\
& \implies A \text{ compact}
\end{align*}
\]
Example: [0, 1] is compact in E^1.

Note: compact \Rightarrow closed and bounded, but converse need not be true.

E.g. [0, 1] with the discrete metric.
Heine-Borel Theorem - \mathbb{E}^1

Theorem 6 (Thm. 8.19, Heine-Borel). *If $A \subseteq \mathbb{E}^1$, then A is compact if and only if A is closed and bounded.*

Proof. Let A be a closed, bounded subset of \mathbb{R}. Then $A \subseteq [a, b]$ for some interval $[a, b]$. Let $\{x_n\}$ be a sequence of elements of $[a, b]$. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ contains a convergent subsequence with limit $x \in \mathbb{R}$. Since $[a, b]$ is closed, $x \in [a, b]$. Thus, we have shown that $[a, b]$ is sequentially compact, hence compact. A is a closed subset of $[a, b]$, hence A is compact.

Conversely, if A is compact, A is closed and bounded. \square
Heine-Borel Theorem - \mathbb{E}^n

Theorem 7 (Thm. 8.20, Heine-Borel). If $A \subseteq \mathbb{E}^n$, then A is compact if and only if A is closed and bounded.

Proof. See de la Fuente. \hfill \square

Example: The closed interval

$$[a, b] = \{x \in \mathbb{R}^n : a_i \leq x_i \leq b_i \text{ for each } i = 1, \ldots, n\}$$

is compact in \mathbb{E}^n for any $a, b \in \mathbb{R}^n$.

\textcopyright 2023
Continuous Images of Compact Sets

Theorem 8 (8.21). Let \((X, d)\) and \((Y, \rho)\) be metric spaces. If \(f : X \to Y\) is continuous and \(C\) is a compact subset of \((X, d)\), then \(f(C)\) is compact in \((Y, \rho)\).

Proof. There is a proof in de la Fuente using sequential compactness. Here we give an alternative proof using directly the open cover definition of compactness.

Let \(\{U_\lambda : \lambda \in \Lambda\}\) be an open cover of \(f(C)\). For each point \(c \in C\), \(f(c) \in f(C)\) so \(f(c) \in U_{\lambda_c}\) for some \(\lambda_c \in \Lambda\), that is, \(c \in f^{-1}(U_{\lambda_c})\). Thus the collection \(\{f^{-1}(U_\lambda) : \lambda \in \Lambda\}\) is a cover of \(C\); in addition, since \(f\) is continuous, each set \(f^{-1}(U_\lambda)\) is
open in C, so $\{f^{-1}(U_\lambda) : \lambda \in \Lambda\}$ is an open cover of C. Since C is compact, there is a finite subcover

$$\{f^{-1}(U_{\lambda_1}), \ldots, f^{-1}(U_{\lambda_n})\}$$

of C. Given $x \in f(C)$, there exists $c \in C$ such that $f(c) = x$, and $c \in f^{-1}(U_{\lambda_i})$ for some i, so $x \in U_{\lambda_i}$. Thus, $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is a finite subcover of $f(C)$, so $f(C)$ is compact. \qed
Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). *Let C be a compact set in a metric space (X, d), and suppose $f : C \to \mathbb{R}$ is continuous. Then f is bounded on C and attains its minimum and maximum on C.*

Proof. $f(C)$ is compact by Theorem 8.21, hence closed and bounded. Let $M = \sup f(C)$; $M < \infty$. Then $\forall m > 0$ there exists $y_m \in f(C)$ such that

$$M - \frac{1}{m} \leq y_m \leq M$$

So $y_m \to M$ and $\{y_m\} \subseteq f(C)$. Since $f(C)$ is closed, $M \in f(C)$, i.e. there exists $c \in C$ such that $f(c) = M = \sup f(C)$, so f attains its maximum at c. The proof for the minimum is similar. \qed
Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let \((X, d)\) and \((Y, \rho)\) be metric spaces, \(C\) a compact subset of \(X\), and \(f : C \to Y\) continuous. Then \(f\) is uniformly continuous on \(C\).

Proof. Fix \(\varepsilon > 0\). We ignore \(X\) and consider \(f\) as defined on the metric space \((C, d)\). Given \(c \in C\), find \(\delta(c) > 0\) such that

\[
x \in C, \quad d(x, c) < 2\delta(c) \Rightarrow \rho(f(x), f(c)) < \frac{\varepsilon}{2}
\]

Let

\[
U_c = B_{\delta(c)}(c)
\]

Then

\[
\{U_c : c \in C\}
\]
is an open cover of C. Since C is compact, there is a finite subcover

$$\{U_{c_1}, \ldots, U_{c_n}\}$$

Let

$$\delta = \min\{\delta(c_1), \ldots, \delta(c_n)\}$$

Given $x, y \in C$ with $d(x, y) < \delta$, note that $x \in U_{c_i}$ for some $i \in \{1, \ldots, n\}$, so $d(x, c_i) < \delta(c_i)$.

$$d(y, c_i) \leq d(y, x) + d(x, c_i)$$
$$< \delta + \delta(c_i)$$
$$\leq \delta(c_i) + \delta(c_i)$$
$$= 2\delta(c_i)$$
so

\[\rho(f(x), f(y)) \leq \rho(f(x), f(c_i)) + \rho(f(c_i), f(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \]

which proves that \(f \) is uniformly continuous. \(\square \)