Economics 204 Summer /Fall 2016
Lecture 1-Monday July 25, 2016

Section 1.2. Methods of Proof

We begin by looking at the notion of proof. What is a proof? “Proof” has a formal
definition in mathematical logic, and a formal proof is long and unreadable. In practice, you
need to learn to recognize a proof when you see one.

We will begin by discussing four main methods of proof that you will encounter frequently:

e deduction
e contraposition
e induction

e contradiction

We look at each in turn.
Proof by Deduction:

A proof by deduction is composed of a list of statements, the last of which is the statement
to be proven. Each statement in the list is either

e an axiom: a fundamental assumption about mathematics, or part of definition of the
object under study; or

e a previously established theorem; or

e follows from previous statements in the list by a valid rule of inference

Example: Prove that the function f(z) = z? is continuous at x = 5.

Recall from one-variable calculus that f(z) = 22 is continuous at x = 5 means
Ve>030>0s.t. |z—5]<d=|f(x)— f(5)| <e

That is, “for every ¢ > 0 there exists a 0 > 0 such that whenever z is within ¢ of 5, f(x) is
within € of f(5).”

To prove the claim, we must systematically verify that this definition is satisfied.

Proof: Let £ > 0 be given. Let

&
= min{1, 2} >0
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Why??
Suppose |z — 5] < §. Since § < 1,4 <x<6,509 <z +5< 11 and |z + 5| < 11. Then

f(x) = f3)] = [|2* —25]

|(z +5)(z — 5)|
= |z +5||lx =5
11-6
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Thus, we have shown that for every ¢ > 0, there exists § > 0 such that |z — 5| < § =
|f(z) — f(5)| < ¢, s0 f(x) =x? is continuous at x = 5. m
Proof by Contraposition:

First recall some basics of logic.

=P means “P is false.”

P A @Q means “P is true and @ is true.”

PV @Q means “P is true or () is true (or possibly both).”

=P A Q means (—P) A Q; =PV @Q means (-P) V Q.

P = () means “whenever P is satisfied, () is also satisfied.”

Formally, P = () is equivalent to =P V Q.

The contrapositive of the statement P = () is the statement

Q) = P

These are logically equivalent, as we prove below.

Theorem 1 P = (@ is true if and only if =Q) = =P 1is true.

Proof: Suppose P = (@ is true. Then either P is false, or @) is true (or possibly both).
Therefore, either =P is true, or =@ is false (or possibly both), so =(=Q) V (=P) is true,
—() = —P is true.

Conversely, suppose =) = —P is true. Then either —() is false, or =P is true (or possibly
both), so either @ is true, or P is false (or possibly both), so =P V @ is true, so P = @ is
true. m



So to prove a statement P = (), it is equivalent to prove the contrapositive =Q) = —P.
See de la Fuente for an example of the use of proof by contraposition.

Proof by Induction:

We illustrate with an example.

Theorem 2 For every n € Ny ={0,1,2,3,...},

z": n+1)

k=1

i 1424 4n="000

Proof:
Base step n = 0: The left hand side (LHS) above = 3.}_, k = the empty sum = 0. The
right hand side (RHS) = % = 0 so the claim is true for n = 0.

Induction step: Suppose

n 1
Sk :L)forsomenz()
k=1

We must show that
ntl m+1)((n+1)+1)

> k=

n+1

LHS = Yk

= zn:k+(n+1)
7’L_(n+1)

= —5 + (n + 1) by the Induction hypothesis

= (1) (5 +1)
(n+1)(n+2)

2
(n+1)((n+1)+1)
2
(n+1)(n+2)
2

= LHS

so by mathematical induction, };_; k = "("+1 for all n € Ny. m

3



Proof by Contradiction:
A proof by contradiction proves a statement by assuming its negation is true and working
until reaching a contradiction. Again we illustrate with an example.

Theorem 3 There is no rational number q such that ¢*> = 2.

Proof: Suppose ¢> = 2, ¢ € Q. We can write g = T for some integers m,n € Z. Moreover,
we can assume that m and n have no common factor; if they did, we could divide it out.!

Therefore, m? = 2n?, so m? is even.
We claim that m is even. If not?, then m is odd, so m = 2p + 1 for some p € Z. Then

m* = (2p+1)°
= 4 +4p+1
2(2p* +2p) +1

which is odd, contradiction. Therefore, m is even, so m = 2r for some r € Z.

4% = (2r)?
= 2n?
n* = 2r?

so n? is even, which implies (by the argument given above) that n is even. Therefore, n = 2s
for some s € Z, so m and n have a common factor, namely 2, contradiction. Therefore, there
is no rational number ¢ such that ¢> = 2. m

Section 1.3 Equivalence Relations

Definition 4 A binary relation R from X to Y is a subset R C X x Y. We write xRy if
(x,y) € R and “not zRy” if (z,y) € R. R C X x X is a binary relation on X.

Example: Suppose f: X — Y is a function from X to Y. The binary relation R C X x Y
defined by
TRy <— f(x) =y

!This is actually a subtle point. We are using the fact that the expression of a natural number as a
product of primes is unique.
2This is a proof by contradiction within a proof by contradiction!
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is exactly the graph of the function f. A function can be considered a binary relation R
from X to Y such that for each z € X there exists exactly one y € Y such that (z,y) € R.

Example: Suppose X = {1,2,3} and R is the binary relation on X given by R =
{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)}. This is the binary relation “is weakly greater than,”
or >.

Definition 5 A binary relation R on X is

(i) reflexive if Vo € X, xRz

(ii) symmetric if Vx,y € X, 2Ry < yRzx

(iii) transitive if Vx,y,z € X, (xRy NyRz) = =Rz
Definition 6 A binary relation R on X is an equivalence relation if it is reflexive, symmetric
and transitive.
Definition 7 Given an equivalence relation R on X, write

[2] = {y € X : 2Ry}
[z] is called the equivalence class containing x.
The set of equivalence classes is the quotient of X with respect to R, denoted X/R.

Example: The binary relation > on R is not an equivalence relation because it is not

symmetric.

Example: Let X = {a,b,¢,d} and R = {(a, a),(a,b), (b,a),(b,b), (¢, ¢), (¢, d), (d, c), (d, d)}.
R is an equivalence relation (why?) and the equivalence classes of R are {a,b} and {c,d}.

X/R = {{a,b},{c,d}}

The following theorem shows that the equivalence classes of an equivalence relation form
a partition of X: every element of X belongs to exactly one equivalence class.
Theorem 8 Let R be an equivalence relation on X. Then Vx € X,z € [z].

Given z,y € X, either [x] = [y] or [z] N [y] = 0.

Proof: If z € X, then xRz because R is reflexive, so x € [z].

Suppose z,y € X. If [z] N [y] = 0, we’re done. So suppose [z] N [y] # 0. We must show
that [z] = [y], i.e. that the elements of [x] are exactly the same as the elements of [y].

>



Choose z € [z] N[y]. Then z € [z], so xRz. By symmetry, zRz. Also z € [y], so yRz.
By symmetry again, zRy. Now choose w € [z]. By definition, x Rw. Since zRz and R is
transitive, z Rw. By symmetry, wRz. Since zRy, wRy by transitivity again. By symmetry,
yRw, so w € [y], which shows that [z] C [y].

Similarly, [y] C [z], so [z] = [y].m

Section 1.4 Cardinality

Definition 9 Two sets A, B are numerically equivalent (or have the same cardinality) if there
is a bijection f: A — B, that is, a function f : A — B that is 1-1 (a # a’ = f(a) # f(d')),
and onto (Vb € B Jda € A s.t. f(a) =0).

Roughly speaking, if two sets have the same cardinality then elements of the sets can be
uniquely matched up and paired off.

A set is either finite or infinite. A set is finite if it is numerically equivalent to {1,...,n}
for some n. A set that is not finite is infinite.

For example, the set A = {2,4,6,...,50} is numerically equivalent to the set {1,2,...,25}
under the function f(n) = 2n. In particular, this shows that A is finite. The set B =
{1,4,9,16,25,36,49 ...} = {n? : n € N} is numerically equivalent to N and is infinite.

An infinite set is either countable or uncountable. A set is countable if it is numerically
equivalent to the set of natural numbers N = {1,2,3,...}. An infinite set that is not
countable is called uncountable.

Example: The set of integers Z is countable.
Z=1{0,1,-1,2,-2,...}

Define f : N — Z by

f)y =0
f2) =1
@) = -1

where |z] is the greatest integer less than or equal to z. It is straightforward to verify that
f is one-to-one and onto.

Notice Z D N but Z # N; indeed, Z \ N is infinite! So statements like “One half of the
elements of Z are in N” are not meaningful.



Theorem 10 The set of rational numbers Q is countable.

“Picture Proof”:

m

0 1 ~1 2 —2
10 — 1 1 — 2 —2

/ / / /
2 |0 1 -1 1 ~1
l/ 1 / 1 / 2 2
n 310 3 —3 3 —3
/ 1 / 1 1 1
410 i ~1 2 —3
l/ 1 1 2 2
510 5 ~5 5 —5

Go back and forth on upward-sloping diagonals, omitting the repeats:

f(1) 0
f2) =1
1
f3) = 2
f4) = -1

f:N — Q, f is one-to-one and onto.

Notice that although Q appears to be much larger than N, in fact they are the same
size.



