
Economics 204 Summer/Fall 2016
Lecture 14+ – Friday August 12, 2016

Differential Equations

Existence and Uniqueness of Solutions

Definition 1 A differential equation is an equation of the form

y′(t) = F (y(t), t)

where F : U → Rn and U is an open subset of Rn × R.

An initial value problem is a differential equation combined with an initial condition

y(t0) = y0

with (y0, t0) ∈ U .

A solution of the initial value problem is a differentiable function y : (a, b) → Rn such
that t0 ∈ (a, b), y(t0) = y0 and, for all t ∈ (a, b), dy

dt
= F (y(t), t).

The general solution of the differential equation is the family of all solutions for all initial
values (y0, t0) ∈ U .

Theorem 2 Consider the initial value problem

y′(t) = F (y(t), t), y(t0) = y0 (1)

Let U be an open set in Rn × R containing (y0, t0).

1. Suppose F : U → Rn is continuous. Then the initial value problem has a solution.

2. If, in addition, F is Lipschitz in y on U , i.e. there is a constant K such that for all
(y, t), (ŷ, t) ∈ U ,

|F (y, t)− F (ŷ, t)| ≤ K|y − ŷ|
then there is an interval (a, b) containing t0 such that the solution is unique on (a, b).

Proof: We consider only the case in which F is Lipschitz.

Since U is open, we may choose r > 0 such that

R = {(y, t) : |y − y0| ≤ r, |t− t0| ≤ r} ⊆ U

Since F is continuous, we may find M ∈ R such that |F (y, t)| ≤ M for all (y, t) ∈ R.
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Given the Lipschitz condition, we may assume that

|F (y, t)− F (ŷ, t)| ≤ K|y − ŷ| for all (y, t), (ŷ, t) ∈ R

Let

δ = min
{

1

2K
,

r

M

}

We claim the initial value problem has a unique solution on (t0 − δ, t0 + δ).

Let C be the space of continuous functions from [t0 − δ, t0 + δ] to Rn, endowed with the
sup norm

‖f‖∞ = sup{|f(t)| : t ∈ [t0 − δ, t0 + δ]}
Let

S = {z ∈ C : (z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ]}
S is a closed subset of the complete metric space C , so S is a complete metric space.

Consider the function I : S → C defined by

I(z)(t) = y0 +
∫ t

t0

F (z(s), s) ds

I(z) is defined and continuous because F is bounded and continuous on R. Observe that if
(z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ], then

|I(z)(t)− y0| =
∣

∣

∣

∣

∫ t

t0

F (z(s), s) ds
∣

∣

∣

∣

≤ |t − t0|max{|F (y, s)| : (y, s) ∈ R}
≤ δM

≤ r

so (I(z)(t), t) ∈ R for all t ∈ [t0 − δ, t0 + δ]. Thus, I : S → S.

Given two functions x, z ∈ S and t ∈ [t0 − δ, t0 + δ],

|I(z)(t)− I(x)(t)| =
∣

∣

∣

∣

y0 +
∫ t

t0

F (z(s), s) ds − y0 −
∫ t

t0

F (x(s), s) ds
∣

∣

∣

∣

=
∣

∣

∣

∣

∫ t

t0

(F (z(s), s)− F (x(s), s)) ds
∣

∣

∣

∣

≤ |t − t0| sup{|F (z(s), s)− F (x(s), s)| : s ∈ [t0 − δ, t0 + δ]}
≤ δK sup{|z(s)− x(s)| : s ∈ [t0 − δ, t0 + δ]}

≤ 1

2
‖z − x‖∞

Therefore, ‖I(z)− I(x)‖∞ ≤ 1
2
‖z − x‖∞, so I is a contraction. Since S is a complete metric

space, I has a unique fixed point y ∈ S. Therefore, for all t ∈ [t0 − δ, t0 + δ], we have

y(t) = y0 +
∫ t

t0

F (y(s), s) ds
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F is continuous, so the Fundamental Theorem of Calculus implies that

y′(t) = F (y(t), t)

for all t ∈ (t0 − δ, t0 + δ). Since we also have

y(t0) = y0 +
∫ t0

t0

F (y(s), s) ds = y0

y (restricted to (t0 − δ, t0 + δ)) is a solution of the initial value problem (1).

On the other hand, suppose that ŷ is any solution of the initial value problem (1) on
(t0 − δ, t0 + δ). It is easy to check that (ŷ(s), s) ∈ R for all s ∈ (t0 − δ, t0 + δ), so we have
|F (ŷ(s), s)| ≤ M ; this implies that ŷ has a extension to a continuous function (still denoted
ŷ) in S. Since ŷ is a solution of the initial value problem, the Fundamental Theorem of
Calculus implies that I (ŷ) = ŷ. Since y is the unique fixed point of I , ŷ = y.

Example: Consider the initial value problem

y′(t) = 1 + y2(t), y(0) = 0

Here, we have F (y, t) = 1 + y2 which is Lipschitz in y over U = V × R, provided that V is
bounded, but not over all of R×R. The theorem tells us that the initial value problem has
a unique solution over some interval of times (a, b), with 0 ∈ (a, b).

We claim the unique solution is y(t) = tan t. To see this, note that

y′(t) =
d

dt
tan t

=
d

dt

sin t

cos t

=
cos t cos t − sin t(− sin t)

cos2 t

=
cos2 t + sin2 t

cos2 t

= 1 +
sin2 t

cos2 t
= 1 + tan2 t

= 1 + (y(t))2

y(0) = tan 0

= 0

Notice that y(t) is defined for t ∈
(

−π
2
, π

2

)

, but

lim
t→−π

2
+

y(t) = −∞ and lim
t→π

2
−

y(t) = ∞

Thus, the solution of the initial value problem cannot be extended beyond the interval
(

−π
2
, π

2

)

, because the solution “blows up” at −π/2 and π/2.
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Example Consider the initial value problem

y′(t) = 2
√

|y|, y(0) = 0 (2)

The function F (y, t) = 2
√

|y| is not locally Lipschitz in y at y = 0:

2
√

|y| − 2
√

0 = 2
√

|y|

=
2

√

|y|
|y|

=
2

√

|y|
|y − 0|

which is not a bounded multiple of |y − 0|. Given any α ≥ 0, let

yα(t) =

{

0 if t ≤ α
(t − α)2 if t ≥ α

We claim that yα is a solution of the initial value problem (2) for every α ≥ 0. For t < α,

y′
α(t) = 0 =

√

|0| = 2
√

|yα(t)|. For t > α, y′
α(t) = 2(t − α) = 2

√

(t − α)2 = 2
√

|yα(t)|. For
t = α,

lim
h→0+

yα(α + h) − yα(α)

h
= lim

h→0+

h2

h
= 0

lim
h→0−

yα(α + h) − yα(α)

h
= lim

h→0−

0

h
= 0

so y′
α(α) = 0 = 2

√

|yα(α)|. Finally, yα(0) = 0, so yα is a solution of the initial value problem

(2), so we see the solution is decidedly not unique!

Remark: The initial value problem of Equation (1) has a solution defined on the interval

(inf {t : ∀s ∈ (t, t0] (y(s), s) ∈ U} , sup {t : ∀s ∈ [t0, t) (y(s), s) ∈ U})
and it is unique on this interval provided that F is locally Lipschitz on U , i.e. for every
(y, t) ∈ U , there is an open set V with (y, t) ∈ V ⊆ U such that F is Lipschitz on V .

Autonomous Differential Equations

In many situations of interest, the function F in the differential equation does not depend
on t.

Definition 3 An autonomous differential equation is a differential equation of the form

y′(t) = F (y(t))

where F : Rn → Rn depends on t only through the value of y(t).

A stationary point of an autonomous differential equation is a point ys ∈ Rn such that
F (ys) = 0.
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We study the qualitative properties of autonomous differential equations by looking for
stationary points. The constant function

y(t) = ys

is a solution (and the unique solution when F is Lipschitz) of the initial value problem

y′ = F (y), y(t0) = ys

If F is C2, then Taylor’s Theorem implies that near a stationary point ys,

F (ys + h) = F (ys) + DF (ys)h + O
(

|h|2
)

= DF (ys)h + O
(

|h|2
)

Thus, when we are sufficiently close to the stationary point, the solutions of the autonomous
differential equation are closely approximated by the solutions of the linear differential equa-
tion

y′ = (y − ys)
′ = DF (ys)(y − ys)

Thus, we study solutions of linear differential equations, using linear algebra. For this we
first recall the formulation of complex exponentials, which are central in the general solution
of linear differential equations.

Complex Exponentials

Recall that the exponential function ex (for x ∈ R or x ∈ C) is given by the Taylor series

ex =
∞
∑

k=0

xk

k!

For x, y ∈ C, we have
ex+y = exey

If x ∈ C, x = a + ib for a, b ∈ R, so

ex = ea+ib

= eaeib

= ea

( ∞
∑

k=0

(ib)k

k!

)

= ea

( ∞
∑

k=0

(ib)2k

(2k)!
+

∞
∑

k=0

(ib)2k+1

(2k + 1)!

)

= ea

( ∞
∑

k=0

i2k b2k

(2k)!
+ i

∞
∑

k=0

i2k b2k+1

(2k + 1)!

)

= ea

( ∞
∑

k=0

(−1)k b2k

(2k)!
+ i

∞
∑

k=0

(−1)k b2k+1

(2k + 1)!

)

= ea (cos b + i sin b)
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Now suppose that t ∈ R, so

etx = eta+itb = eta(cos tb + i sin tb)

• If a < 0, then etx → 0 as t → ∞

• If a > 0, then |etx| → ∞ as t → ∞

• If a = 0, then |etx| = 1 for all t ∈ R

Linear Differential Equations with Constant Coefficients

Let M ∈ Rn×n. The linear differential equation

y′ = (y − ys)
′ = M(y − ys)

has a complete solution in closed form.

The matrix representation
M = DF (ys)

need not be symmetric, hence may not be diagonalizable. If M is diagonalizable over C, the
complete solution takes the following simple form:

Theorem 4 Consider the linear differential equation

y′ = (y − ys)
′ = M(y − ys)

where M is a real n×n matrix. Suppose that M can be diagonalized over the complex field C.
Let U be the standard basis of Rn and V = {v1, . . . , vn} be a basis of (complex) eigenvectors
corresponding to the eigenvalues λ1, . . . , λn ∈ C. Then the solution of the initial value
problem is given by

y(t) = ys + P−1













eλ1(t−t0) 0 0 · · · 0
0 eλ2(t−t0) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eλn(t−t0)













P (y(t0) − ys) (3)

where P = (Mtx)V,U(id), and the general complex solution is obtained by allowing y(t0) to
vary over Cn; it has n complex degrees of freedom. The general real solution is obtained by
allowing y(t0) to vary over Rn; it has n real degrees of freedom. Every real solution is a
linear combination of the real and imaginary parts of a complex solution. In particular,

1. If the real part of each eigenvalue is less than zero, all solutions converge to ys.

2. If the real part of each eigenvalue is greater than zero, all solutions diverge from ys and
tend to infinity.
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3. If the real parts of some eigenvalues are less than zero and the real parts of other
eigenvalues are greater than zero, solutions follow roughly hyperbolic paths.

4. If the real parts of all eigenvalues are zero, all solutions follow closed cycles around ys.

Remark: If one or more of the eigenvalues are complex, each of the three matrices in
Equation (3) will contain complex entries, but the product of the three matrices is real.
Thus, if the initial condition y0 is real, Equation (3) gives us a real solution; indeed, it gives
us the unique solution of the initial value problem.

Remark: Given a fixed time t0, the general real solution is obtained by varying the initial
values of y(t0) over Rn, which provides n real degrees of freedom. You might think that
varying t0 provides one additional degree of freedom, but it doesn’t. Given any solution
satisfying the initial condition y(t0) = y0, the solution is defined on some interval (t0−δ, t0 +
δ); given t1 ∈ (t0−δ, t0 +δ), let y1 = y(t1); then the solution with initial condition y(t1) = y1

is the same as the solution with initial condition y(t0) = y0. The same holds true for the
general complex solution.

Proof: Let P = (Mtx)V,U(id). Rewrite the differential equation in terms of a new variable

z = Py

the representation of the solution with respect to the basis V of eigenvectors. Let zs = Pys.
Then we have

z − zs = P (y − ys)

(z − zs)
′ = z′

= Py′

= PM(y − ys)

= PMP−1(z − zs)

= B(z − zs)

where

B =













λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn













Thus, the ith component of (z(t)− zs) satisfies the differential equation

(z(t) − zs)
′
i
= λi (z(t) − zs)i

so
(z(t)− zs)i = eλi(t−t0)(z(t0) − zs)i
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so

z(t)− zs =













eλ1(t−t0) 0 0 · · · 0
0 eλ2(t−t0) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eλn(t−t0)













(z(t0) − zs)

y(t)− ys = P−1(z(t) − zs)

= P−1













eλ1(t−t0) 0 0 · · · 0
0 eλ2(t−t0) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eλn(t−t0)













(z(t0) − zs)

= P−1













eλ1(t−t0) 0 0 · · · 0
0 eλ2(t−t0) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · eλn(t−t0)













P (y(t0) − ys)

The Form of Real Solutions

We can determine the form of the real solutions once we know the eigenvalues. In an
important special case, we can solve for the solution of the initial value problem without
calculating the diagonalization, as in Equation (3).

Theorem 5 Consider the differential equation

y′ = (y − ys)
′ = M(y − ys)

Suppose that the matrix M can be diagonalized over C. Let the eigenvalues of M with the
correct multiplicity be

a1 + ib1, a1 − ib1, . . . , am + ibm, am − ibm, am+1, . . . , an−m

Then for each fixed i = 1, . . . , n, every real solution is of the form

(y(t)− ys)i =
m
∑

j=1

eaj(t−t0) (Cij cos bj(t − t0) + Dij sin bj(t − t0)) +
n−m
∑

j=m+1

Cije
aj(t−t0)

The n2 parameters

{Cij : i = 1, . . . , n; j = 1, . . . , n − m} ∪ {Dij : i = 1, . . . , n; j = 1, . . . , m}

have n real degrees of freedom. The parameters are uniquely determined from the n real
initial conditions of an initial value problem.
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Proof: Rewrite the expression for the solution y as

(y(t)− ys)i =
n
∑

j=1

γije
λj(t−t0)

Recall that the non-real eigenvalues occur in conjugate pairs, so suppose that

λj = a + ib, λk = a − ib

so the expression for (y(t)− ys)i contains the pair of terms

γije
λj(t−t0) + γike

λk(t−t0) = γije
a(t−t0) (cos b(t− t0) + i sin b(t− t0))

+γike
a(t−t0) (cos b(t− t0) − i sin b(t− t0))

= ea(t−t0) ((γij + γik) cos b(t− t0) + i (γij − γik) sin b(t− t0))

= ea(t−t0) (Cij cos b(t− t0) + Dij sin b(t− t0))

Since this must be real for all t, we must have

Cij = γij + γik ∈ R and Dij = i (γij − γik) ∈ R

so γij and γik are complex conjugates; this can also be shown directly from the matrix formula
for y in terms of z.

Thus, if the eigenvalues λ1, . . . , λn are

a1 + ib1, a1 − ib1, a2 + ib2, a2 − ib2, . . . , am + ibm, am − ibm, am+1, . . . , an−m

every real solution will be of the form

(y(t)− ys)i =
m
∑

j=1

eaj(t−t0) (Cij cos bj(t − t0) + Dij sin bj(t − t0)) +
n−m
∑

j=m+1

Cije
aj(t−t0)

Since the differential equation satisfies a Lipschitz condition, the initial value problem has a
unique solution determined by the n real initial conditions. Thus, the general solution has
exactly n real degrees of freedom in the n2 coefficients.

Remark: The constraints among the coefficients Cij, Dij can be complicated. One cannot
just solve for the coefficients of y1 from the initial conditions, then derive the coefficients for
y2, . . . , yn. For example, consider the differential equation

(

y1

y2

)′

=

(

2 0
0 1

)(

y1

y2

)

The eigenvalues are 2 and 1. If we set

y1(t) = C11e
2(t−t0) + C12e

t−t0

y2(t) = C21e
2(t−t0) + C22e

t−t0
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we get

y1(t0) = C11 + C12

y2(t0) = C21 + C22

which doesn’t have a unique solution. However, from the original differential equation, we
have

y1(t) = y1(t0)e
2(t−t0), y2(t) = y2(t0)e

t−t0

so
C11 = y1(t0) C12 = 0

C21 = 0 C22 = y2(t0)

One can find the solution to the initial value problem by plugging the n real initial condi-
tions into Equation (3) in Theorem 4 above, and the general solution by varying the initial
conditions.

However, in the special case

ȳ =













y
y′

...
y(n−1)













the coefficients
C11, . . . , C1n−m, D11, . . . , D1m

in the general solution are arbitrary real numbers; once they are set, the other coefficients
are determined. Write

y(t)− ys =
m
∑

j=1

eaj(t−t0) (Cj cos bj(t − t0) + Dj sin bj(t − t0)) +
n−m
∑

j=m+1

Cje
aj(t−t0)

For the initial value problem, compute the first n − 1 derivatives of y at t0 and set them
equal to the initial conditions. This yields n linear equations in the n coefficients, which
have a unique solution. See the next section for an example of this.

Note also that

Cje
aj(t−t0) =

(

Cje
−ajt0

)

eajt

cos bj(t − t0) = cos (bjt− bjt0)

= cos bjt cos bjt0 + sin bjt sin bjt0

sin bj(t − t0) = sin (bjt − bjt0)

= − cos bjt sin bjt0 + sin bjt cos bjt0

so we can also write

y(t)− ys =
m
∑

j=1

eajt (Cj cos bjt + Dj sin bjt) +
n−m
∑

j=m+1

Cje
ajt
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Second Order Linear Differential Equations

Consider the second order differential equation y′′ = cy + by′ with b, c ∈ R.

Rewrite this as a first order linear differential equation in two variables:

ȳ(t) =

(

y(t)
y′(t)

)

ȳ′(t) =

(

y′(t)
y′′(t)

)

=

(

0 1
c b

)(

y(t)
y′(t)

)

=

(

0 1
c b

)

ȳ

The eigenvalues are b±
√

b2+4c
2

, the roots of the equation λ2 − bλ − c = 0. The qualitative
behavior of the solutions can be explicitly described from the coefficients b and c, by deter-
mining whether the eigenvalues are real or complex, and whether the real parts are negative,
zero, or positive. See Section 6 of the Differential Equations Handout.

Example Consider the second order linear differential equation

y′′ = 2y + y′

As above, let

ȳ =

(

y
y′

)

so the equation becomes

ȳ′ =

(

0 1
2 1

)

ȳ

The eigenvalues are the roots of the characteristic polynomial

λ2 − λ − 2 = 0

Eigenvalues and corresponding eigenvectors are given by

λ1 = 2 v1 = (1, 2)
λ2 = −1 v2 = (1,−1)

Note that because the matrix

M =

(

0 1
2 1

)

has two distinct eigenvalues (alternatively, because the eigenvectors {v1, v2} form a basis),
M is diagonalizable. From this information alone, we know the qualitative properties of the
solutions are as given in the phase plane diagram (see Figure 1):
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• Solutions are roughly hyperbolic in shape with asymptotes along the eigenvectors.
Along the eigenvector v1, the solutions flow off to infinity; along the eigenvector v2, the
solutions converge to zero.

• Solutions flow in directions consistent with flows along asymptotes

• On the y-axis, we have y′ = 0, which means that everywhere on the y-axis (except at
the stationary point 0), the solution must have a vertical tangent.

• On the y′-axis, we have y = 0, so we have

y′′ = 2y + y′ = y′

Thus, above the y-axis, y′′ = y′ > 0, so y′ is increasing along the direction of the
solution; below the y-axis, y′′ = y′ < 0, so y′ is decreasing along the direction of the
solution.

• Along the line y′ = −2y, y′′ = 2y − 2y = 0, so y′ achieves a minimum or maximum
where it crosses that line.

The general solution is given by

(

y(t)
y′(t)

)

= MtxU,V (id)

(

e2(t−t0) 0
0 e−(t−t0)

)

MtxV,U(id)

(

y(t0)
y′(t0)

)

=

(

1 1
2 −1

)(

e2(t−t0) 0
0 e−(t−t0)

)(

1/3 1/3
2/3 −1/3

)(

y(t0)
y′(t0)

)

=

(

1 1
2 −1

)(

e2(t−t0)

3
e2(t−t0)

3
2e−(t−t0)

3
− e−(t−t0)

3

)(

y(t0)
y′(t0)

)

=









e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3















y(t0)

y′(t0)







=









y(t0)+y′(t0)
3

e2(t−t0) + 2y(t0)−y′(t0)
3

e−(t−t0)

2y(t0)+2y′(t0)
3

e2(t−t0) + −2y(t0)+y′(t0)
3

e−(t−t0)









The general solution has two real degrees of freedom; a specific solution is determined by
specifying initial conditions y(t0) and y′(t0).

Because

ȳ =

(

y
y′

)

it is easier to find the general solution by first setting

y(t) = C1e
2(t−t0) + C2e

−(t−t0)
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Then observe
y′(t) = 2C1e

2(t−t0) − C2e
−(t−t0)

Then evaluating y(t) and y′(t) at t = t0 and using the initial conditions y(t0) and y′(t0) gives
two equations involving C1 and C2, which can be solved for C1 and C2 to determine the
general solution.

Thus

y(t0) = C1 + C2

y′(t0) = 2C1 −C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0) − y′(t0)

3

Thus the general solution is

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0) − y′(t0)

3
e−(t−t0)
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Figure 1: Phase plane diagram for y′′ = 2y + y′.
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