Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in \mathbb{R}^n to abstract settings.

Definition 1 A *metric space* is a pair (X, d), where X is a set and $d : X \times X \to \mathbb{R}^+_0$ a function satisfying

1. $d(x, y) \geq 0$, $d(x, y) = 0 \iff x = y \forall x, y \in X$
2. $d(x, y) = d(y, x) \forall x, y \in X$
3. triangle inequality: $d(x, z) \leq d(x, y) + d(y, z) \forall x, y, z \in X$

A function $d : X \times X \to \mathbb{R}^+_0$ satisfying 1-3 is called a *metric* on X.

A metric gives a notion of distance between elements of X.

Definition 2 Let V be a vector space over \mathbb{R}. A *norm* on V is a function $\| \cdot \| : V \to \mathbb{R}^+_0$ satisfying

1. $\|x\| \geq 0 \forall x \in V$
2. $\|x\| = 0 \iff x = 0 \forall x \in V$
3. triangle inequality: $\|x + y\| \leq \|x\| + \|y\| \forall x, y \in V$

4. $\|\alpha x\| = |\alpha|\|x\| \forall \alpha \in \mathbb{R}, x \in V$

A *normed vector space* is a vector space over \mathbb{R} equipped with a norm.
A norm gives a notion of length of a vector in V.

Example: In \mathbb{R}^n, the standard notion of distance between two vectors x and y measures the length of the difference $x - y$, i.e.,

$$d(x, y) = \|x - y\| = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}.$$

In an abstract normed vector space, the norm can be used analogously to define a notion of distance.

Theorem 3 Let $(V, \| \cdot \|)$ be a normed vector space. Let $d : V \times V \rightarrow \mathbb{R}_+$ be defined by

$$d(v, w) = \|v - w\|$$

Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

1. Let $v, w \in V$. Then by definition, $d(v, w) = \|v - w\| \geq 0$ (why?), and

 $$d(v, w) = 0 \iff \|v - w\| = 0$$

 $$\iff v - w = 0$$

 $$\iff (v + (-w)) + w = w$$

 $$\iff v + ((-w) + w) = w$$

 $$\iff v + 0 = w$$

 $$\iff v = w$$

2. First, note that for any $x \in V$, $0 \cdot x = (0 + 0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$. Then $0 = 0 \cdot x = (1 - 1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$, so we have $(-1) \cdot x = (-x)$. Then let $v, w \in V$.

 $$d(v, w) = \|v - w\|$$

 $$= \|(-1)(v + (-w))\|$$

 $$= \|(-1)v + (-1)(-w)\|$$

 $$= \|-v + w\|$$

 $$= \|w - (-v)\|$$

 $$= \|w - v\|$$

 $$= d(w, v)$$

3. Let $u, w, v \in V$.

 $$d(u, w) = \|u - w\|$$

 $$= \|u + (-v + v) - w\|$$

 $$= \|u - v + v - w\|$$

 $$\leq \|u - v\| + \|v - w\|$$

 $$= d(u, v) + d(v, w)$$
Thus \(d\) is a metric on \(V\). ■

Examples of Normed Vector Spaces

- **\(\mathbb{E}^n\):** \(n\)-dimensional Euclidean space.

 \[
 V = \mathbb{R}^n, \quad \|x\|_2 = |x| = \sqrt{\sum_{i=1}^{n} (x_i)^2}
 \]

- **\(V = \mathbb{R}^n\), \(\|x\|_1 = \sum_{i=1}^{n} |x_i|\)** (the “taxi cab” norm or \(L^1\) norm)

- **\(V = \mathbb{R}^n\), \(\|x\|_\infty = \max\{|x_1|, \ldots, |x_n|\}\)** (the maximum norm, or sup norm, or \(L^\infty\) norm)

- **\(C([0, 1]), \|f\|_\infty = \sup\{|f(t)| : t \in [0, 1]\}\)**

- **\(C([0, 1]), \|f\|_2 = \sqrt{\int_0^1 (f(t))^2\, dt}\)**

- **\(C([0, 1]), \|f\|_1 = \int_0^1 |f(t)|\, dt\)**

Theorem 4 (Cauchy-Schwarz Inequality)

If \(v, w \in \mathbb{R}^n\), then

\[
\left(\sum_{i=1}^{n} v_i w_i\right)^2 \leq \left(\sum_{i=1}^{n} v_i^2\right) \left(\sum_{i=1}^{n} w_i^2\right)
\]

\[
|v \cdot w|^2 \leq |v|^2 |w|^2
\]

\[
|v \cdot w| \leq |v||w|
\]

Proof: Read the proof in de La Fuente. ■

The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in \(\mathbb{E}^n\). Deriving the triangle inequality in \(\mathbb{E}^n\) from the Cauchy-Schwarz inequality is a good exercise. The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in \(\mathbb{R}^2\), in particular the law of cosines. Note that for \(v, w \in \mathbb{R}^2\), \(v \cdot w = |v||w|\cos \theta\) where \(\theta\) is the angle between \(v\) and \(w\); see Figure 1.\(^1\)

Notice that a given vector space may have many different norms. As a trivial example, if \(\|\cdot\|\) is a norm on a vector space \(V\), so are \(2\|\cdot\|\) and \(3\|\cdot\|\) and \(k\|\cdot\|\) for any \(k > 0\). Less trivially, \(\mathbb{R}^n\) supports many different norms as in the examples above. Different norms on a given vector space yield different geometric properties; for example, see Figure 2 for different norms on \(\mathbb{R}^2\).

\(^1\)From the law of cosines, \((v - w) \cdot (v - w) = v \cdot v + w \cdot w - 2|v||w|\cos \theta\). On the other hand, \((v - w) \cdot (v - w) = v \cdot v - 2v \cdot w + w \cdot w\), so \(v \cdot w = |v||w|\cos \theta\).
Definition 5 Two norms $\| \cdot \|$ and $\| \cdot \|^*$ on the same vector space V are said to be Lipschitz-equivalent (or equivalent) if $\exists m, M > 0$ s.t. $\forall x \in V$,

$$m \| x \| \leq \| x \|^* \leq M \| x \|$$

Equivalently, $\exists m, M > 0$ s.t. $\forall x \in V, x \neq 0$,

$$m \leq \frac{\| x \|^*}{\| x \|} \leq M$$

If two norms are equivalent, then they define the same notions of convergence and continuity. For topological purposes, equivalent norms are indistinguishable. For example, suppose two norms $\| \cdot \|$ and $\| \cdot \|^*$ on the vector space V are equivalent, and fix $x \in V$. Let $B_\varepsilon(x, \| \cdot \|)$ denote the $\| \cdot \|$-ball of radius ε about x; similarly, let $B_\varepsilon(x, \| \cdot \|^*)$ denote the $\| \cdot \|^*$-ball of radius ε about x. That is,

$$B_\varepsilon(x, \| \cdot \|) = \{ y \in V : \| x - y \| < \varepsilon \}$$

$$B_\varepsilon(x, \| \cdot \|^*) = \{ y \in V : \| x - y \|^* < \varepsilon \}$$

Then for any $\varepsilon > 0$,

$$B_\frac{m}{M}(x, \| \cdot \|) \subseteq B_\varepsilon(x, \| \cdot \|^*) \subseteq B_\frac{M}{m}(x, \| \cdot \|)$$

See Figure 3.

In \mathbb{R}^n (or any finite-dimensional normed vector space), all norms are equivalent. This says roughly that, up to a difference in scaling, for topological purposes there is a unique norm in \mathbb{R}^n.

Theorem 6 All norms on \mathbb{R}^n are equivalent.2

2The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a problem.
However, infinite-dimensional spaces support norms that are not equivalent. For example, on \(C([0, 1]) \), let \(f_n \) be the function

\[
f_n(t) = \begin{cases}
1 - nt & \text{if } t \in \left[0, \frac{1}{n}\right] \\
0 & \text{if } t \in \left(\frac{1}{n}, 1\right]
\end{cases}
\]

Then

\[
\frac{\|f_n\|_1}{\|f_n\|_\infty} = \frac{1}{2n} \to 0
\]

Definition 7 In a metric space \((X, d)\), a subset \(S \subseteq X\) is **bounded** if \(\exists x \in X, \beta \in \mathbb{R}\) such that \(\forall s \in S, d(s, x) \leq \beta\).

In a metric space \((X, d)\), define

\[
B_\varepsilon(x) = \left\{ y \in X : d(y, x) < \varepsilon \right\}
\]

= open ball with center \(x\) and radius \(\varepsilon\)

\[
B_\varepsilon[x] = \left\{ y \in X : d(y, x) \leq \varepsilon \right\}
\]

= closed ball with center \(x\) and radius \(\varepsilon\)

We can use the metric \(d\) to define a generalization of “radius”. In a metric space \((X, d)\), define the **diameter** of a subset \(S \subseteq X\) by

\[
diam(S) = \sup\{d(s, s') : s, s' \in S\}
\]

Similarly, we can define the distance from a point to a set, and distance between sets, as follows:

\[
d(A, x) = \inf_{a \in A} d(a, x)
\]

\[
d(A, B) = \inf_{a \in A} d(B, a)
\]

\[
= \inf\{d(a, b) : a \in A, b \in B\}
\]

Note that \(d(A, x)\) cannot be a metric (since a metric is a function on \(X \times X\), the first and second arguments must be objects of the same type); in addition, \(d(A, B)\) does not define a metric on the space of subsets of \(X\) (why?).

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let \((X, d)\) be a metric space. A sequence \(\{x_n\}\) **converges** to \(x\) (written \(x_n \to x\) or \(\lim_{n \to \infty} x_n = x\)) if

\[
\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \text{ s.t. } n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon
\]

\(^3\)Another, more useful notion of the distance between sets is the Hausdorff distance, given by \(d(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b)\}\).
Notice that this is exactly the same as the definition of convergence of a sequence of real numbers, except we replace the standard measure of distance $| \cdot |$ in \mathbb{R} by the general metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if $x_n \to x$ and $x_n \to x'$, then $x = x'$.

![Diagram of limits](image)

Proof: Suppose $\{x_n\}$ is a sequence in X, $x_n \to x$, $x_n \to x'$, $x \neq x'$. Since $x \neq x'$, $d(x, x') > 0$.

Let
\[\varepsilon = \frac{d(x, x')}{2} \]

Then there exist $N(\varepsilon)$ and $N'(\varepsilon)$ such that
\[
\begin{align*}
\text{If } n > N(\varepsilon) & \Rightarrow d(x_n, x) < \varepsilon \\
\text{If } n > N'(\varepsilon) & \Rightarrow d(x_n, x') < \varepsilon
\end{align*}
\]

Choose
\[n > \max\{N(\varepsilon), N'(\varepsilon)\} \]

Then
\[
\begin{align*}
d(x, x') & \leq d(x, x_n) + d(x_n, x') \\
& < \varepsilon + \varepsilon \\
& = 2\varepsilon \\
& = d(x, x') \\
d(x, x') & < d(x, x')
\end{align*}
\]

a contradiction.

Definition 10 An element c is a *cluster point* of a sequence $\{x_n\}$ in a metric space (X, d) if $\forall \varepsilon > 0$, $\{n : x_n \in B_\varepsilon(c)\}$ is an infinite set. Equivalently,
\[
\forall \varepsilon > 0, N \in \mathbb{N} \exists n > N \ 	ext{s.t.} \ x_n \in B_\varepsilon(c)
\]
Example:

\[x_n = \begin{cases}
1 - \frac{1}{n} & \text{if } n \text{ even} \\
\frac{1}{n} & \text{if } n \text{ odd}
\end{cases} \]

For \(n \) large and odd, \(x_n \) is close to zero; for \(n \) large and even, \(x_n \) is close to one. The sequence does not converge; the set of cluster points is \(\{0, 1\} \).

If \(\{x_n\} \) is a sequence and \(n_1 < n_2 < n_3 < \cdots \) then \(\{x_{n_k}\} \) is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence, in the same order.

Example: \(x_n = \frac{1}{n} \), so \(\{x_n\} = \left(1, \frac{1}{2}, \frac{1}{3}, \ldots \right) \). If \(n_k = 2k \), then \(\{x_{n_k}\} = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots \right) \).

Theorem 11 (2.4 in De La Fuente, plus …) Let \((X, d)\) be a metric space, \(c \in X \), and \(\{x_n\} \) a sequence in \(X \). Then \(c \) is a cluster point of \(\{x_n\} \) if and only if there is a subsequence \(\{x_{n_k}\} \) such that \(\lim_{k \to \infty} x_{n_k} = c \).

Proof: Suppose \(c \) is a cluster point of \(\{x_n\} \). We inductively construct a subsequence that converges to \(c \). For \(k = 1 \), \(\{n : x_n \in B_1(c)\} \) is infinite, so nonempty; let

\[n_1 = \min\{n : x_n \in B_1(c)\} \]

Now, suppose we have chosen \(n_1 < n_2 < \cdots < n_k \) such that

\[x_{n_j} \in B_{\frac{1}{j}}(c) \text{ for } j = 1, \ldots, k \]

\(\{n : x_n \in B_{\frac{1}{n+k}}(c)\} \) is infinite, so it contains at least one element bigger than \(n_k \), so let

\[n_{k+1} = \min\{n : n > n_k, \ x_n \in B_{\frac{1}{n+k}}(c)\} \]

Thus, we have chosen \(n_1 < n_2 < \cdots < n_k < n_{k+1} \) such that

\[x_{n_j} \in B_{\frac{1}{j}}(c) \text{ for } j = 1, \ldots, k, k + 1 \]

Thus, by induction, we obtain a subsequence \(\{x_{n_k}\} \) such that

\[x_{n_k} \in B_{\frac{1}{k}}(c) \]

Given any \(\varepsilon > 0 \), by the Archimedean property, there exists \(N(\varepsilon) > 1/\varepsilon \).

\[k > N(\varepsilon) \Rightarrow x_{n_k} \in B_{\frac{1}{k}}(c) \Rightarrow x_{n_k} \in B_{\varepsilon}(c) \]

so

\[x_{n_k} \to c \text{ as } k \to \infty \]
Conversely, suppose that there is a subsequence \(\{x_{n_k}\} \) converging to \(c \). Given any \(\varepsilon > 0 \), there exists \(K \in \mathbb{N} \) such that

\[
k > K \Rightarrow d(x_{n_k}, c) < \varepsilon \Rightarrow x_{n_k} \in B_\varepsilon(c)
\]

Therefore,

\[
\{n : x_n \in B_\varepsilon(c)\} \supseteq \{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\}
\]

Since \(n_{K+1} < n_{K+2} < n_{K+3} < \cdots \), this set is infinite, so \(c \) is a cluster point of \(\{x_n\} \). ■

Section 2.3. Sequences in \(\mathbb{R} \) and \(\mathbb{R}^m \)

Definition 12 A sequence of real number \(\{x_n\} \) is **increasing** (decreasing) if \(x_{n+1} \geq x_n \) (\(x_{n+1} \leq x_n \)) for all \(n \).

Definition 13 If \(\{x_n\} \) is a sequence of real numbers, \(\{x_n\} \) **tends to infinity** (written \(x_n \to \infty \) or \(\lim x_n = \infty \)) if

\[
\forall K \in \mathbb{R} \exists N(K) \text{ s.t. } n > N(K) \Rightarrow x_n > K
\]

Similarly define \(x_n \to -\infty \) or \(\lim x_n = -\infty \).

Notice we don’t say the sequence **converges** to infinity; the term “converge” is limited to the case of finite limits.

Theorem 14 (Theorem 3.1’) Let \(\{x_n\} \) be an increasing (decreasing) sequence of real numbers. Then \(\lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\} \) (\(\lim_{n \to \infty} x_n = \inf \{x_n : n \in \mathbb{N}\} \)). In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case. ■

Lim Sups and Lim Infs:

Consider a sequence \(\{x_n\} \) of real numbers. Let

\[
\alpha_n = \sup\{x_k : k \geq n\} \\
= \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\} \\
\beta_n = \inf\{x_k : k \geq n\}
\]

Either \(\alpha_n = +\infty \) for all \(n \), or \(\alpha_n \in \mathbb{R} \) and \(\alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \cdots \). Either \(\beta_n = -\infty \) for all \(n \), or \(\beta_n \in \mathbb{R} \) and \(\beta_1 \leq \beta_2 \leq \beta_3 \leq \cdots \).

\(^4\)See the handout for this material.
Definition 15

\[
\limsup_{n \to \infty} x_n = \begin{cases}
+\infty & \text{if } \alpha_n = +\infty \text{ for all } n \\
\lim \alpha_n & \text{otherwise.}
\end{cases}
\]

\[
\liminf_{n \to \infty} x_n = \begin{cases}
-\infty & \text{if } \beta_n = -\infty \text{ for all } n \\
\lim \beta_n & \text{otherwise.}
\end{cases}
\]

Theorem 16 Let \(\{x_n\} \) be a sequence of real numbers. Then

\[
\lim_{n \to \infty} x_n = \gamma \in \mathbb{R} \cup \{-\infty, \infty\} \iff \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \gamma
\]

Theorem 17 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.

Proof: Let

\[S = \{s \in \mathbb{N} : x_s > x_n \quad \forall n > s\} \]

Either \(S \) is infinite, or \(S \) is finite.

If \(S \) is infinite, let

\[
n_1 = \min S \\
n_2 = \min (S \setminus \{n_1\}) \\
n_3 = \min (S \setminus \{n_1, n_2\}) \\
\vdots \\
n_{k+1} = \min (S \setminus \{n_1, n_2, \ldots, n_k\})
\]

Then \(n_1 < n_2 < n_3 < \cdots \).

\[
x_{n_1} > x_{n_2} \quad \text{since } n_1 \in S \text{ and } n_2 > n_1 \\
x_{n_2} > x_{n_3} \quad \text{since } n_2 \in S \text{ and } n_3 > n_2 \\
\vdots \\
x_{n_k} > x_{n_{k+1}} \quad \text{since } n_k \in S \text{ and } n_{k+1} > n_k \\
\vdots
\]
so \(\{x_{n_k}\} \) is a strictly decreasing subsequence of \(\{x_n\} \).

If \(S \) is finite and nonempty, let \(n_1 = (\max S) + 1 \); if \(S = \emptyset \), let \(n_1 = 1 \). Then

\[
\begin{align*}
 n_1 & \notin S \quad \text{so} \quad \exists n_2 > n_1 \text{ s.t. } x_{n_2} \geq x_{n_1} \\
 n_2 & \notin S \quad \text{so} \quad \exists n_3 > n_2 \text{ s.t. } x_{n_3} \geq x_{n_2} \\
 & \vdots \\
 n_k & \notin S \quad \text{so} \quad \exists n_{k+1} > n_k \text{ s.t. } x_{n_{k+1}} \geq x_{n_k} \\
 & \vdots
\end{align*}
\]

so \(\{x_{n_k}\} \) is a (weakly) increasing subsequence of \(\{x_n\} \).

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real numbers contains a convergent subsequence.

Proof: Let \(\{x_n\} \) be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence \(\{x_{n_k}\} \). If \(\{x_{n_k}\} \) is increasing, then by Theorem 3.1',

\[
\lim x_{n_k} = \sup \{x_{n_k} : k \in \mathbb{N}\} \leq \sup \{x_n : n \in \mathbb{N}\} < \infty,
\]

since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges.

\[\blacksquare\]
Figure 2: The unit ball around 0 in different norms on \mathbb{R}^2: standard $\| \cdot \|_2$, $\| \cdot \|_1$ (L^1 or taxi cab norm) and $\| \cdot \|_{\infty}$ (sup norm or L^∞ norm).
Figure 3: All norms on \mathbb{R}^n are equivalent.