Section 2.4. Open and Closed Sets

Definition 1 Let \((X, d)\) be a metric space. A set \(A \subseteq X\) is open if
\[
\forall x \in A \exists \varepsilon > 0 \text{ s.t. } B_\varepsilon(x) \subseteq A
\]
A set \(C \subseteq X\) is closed if \(X \setminus C\) is open.

See Figure 1.

Example: \((a, b)\) is open in the metric space \(E^1\) (\(\mathbb{R}\) with the usual Euclidean metric). Given \(x \in (a, b), a < x < b\). Let\[
\varepsilon = \min\{x - a, b - x\} > 0
\]
Then
\[
y \in B_\varepsilon(x) \Rightarrow y \in (x - \varepsilon, x + \varepsilon) \\
\subseteq (x - (x - a), x + (b - x)) \\
= (a, b)
\]
so \(B_\varepsilon(x) \subseteq (a, b)\), so \((a, b)\) is open.

Notice that \(\varepsilon\) depends on \(x\); in particular, \(\varepsilon\) gets smaller as \(x\) nears the boundary of the set.

Example: In \(E^1\), \([a, b]\) is closed. \(\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)\) is a union of two open sets, which must be open.

Example: In the metric space \([0, 1]\), \([0, 1]\) is open. With \([0, 1]\) as the underlying metric space, \(B_\varepsilon(0) = \{x \in [0, 1] : |x - 0| < \varepsilon\} = [0, \varepsilon]\).

Thus, openness and closedness depend on the underlying metric space as well as on the set.

Example: Most sets are neither open nor closed. For example, in \(E^1\), \([0, 1] \cup (2, 3)\) is neither open nor closed.

Example: An open set may consist of a single point. For example, if \(X = \mathbb{N}\) and \(d(m, n) = |m - n|\), then \(B_{1/2}(1) = \{m \in \mathbb{N} : |m - 1| < 1/2\} = \{1\}\). Since 1 is the only element of the set \(\{1\}\) and \(B_{1/2}(1) = \{1\} \subseteq \{1\}\), the set \(\{1\}\) is open.

Example: In any metric space \((X, d)\) both \(\emptyset\) and \(X\) are open, and both \(\emptyset\) and \(X\) are closed. To see that \(\emptyset\) is open, note that the statement
\[
\forall x \in \emptyset \exists \varepsilon > 0 \ B_\varepsilon(x) \subseteq \emptyset
\]
is vacuously true since there aren’t any \(x \in \emptyset \). To see that \(X \) is open, note that since \(B_\varepsilon(x) \) is by definition \(\{ z \in X : d(z, x) < \varepsilon \} \), it is trivially contained in \(X \). Since \(\emptyset \) is open, \(X \) is closed; since \(X \) is open, \(\emptyset \) is closed.

Example: Open balls are open sets. Suppose \(y \in B_\varepsilon(x) \). Then \(d(x, y) < \varepsilon \). Let \(\delta = \varepsilon - d(x, y) > 0 \). If \(d(z, y) < \delta \), then

\[
\begin{align*}
d(z, x) & \leq d(z, y) + d(y, x) \\
& < \delta + d(x, y) \\
& = \varepsilon - d(x, y) + d(x, y) \\
& = \varepsilon
\end{align*}
\]

so \(B_\delta(y) \subseteq B_\varepsilon(x) \), so \(B_\varepsilon(x) \) is open.

Theorem 2 (Thm. 4.2) Let \((X, d)\) be a metric space. Then

1. \(\emptyset \) and \(X \) are both open, and both closed.
2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is open.
3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already shown this.
2. Suppose \(\{A_\lambda\}_{\lambda \in \Lambda} \) is a collection of open sets.

\[
x \in \bigcup_{\lambda \in \Lambda} A_\lambda \implies \exists \lambda_0 \in \Lambda \text{ s.t. } x \in A_{\lambda_0} \implies \exists \varepsilon > 0 \text{ s.t. } B_\varepsilon(x) \subseteq A_{\lambda_0} \subseteq \bigcup_{\lambda \in \Lambda} A_\lambda
\]

so \(\bigcup_{\lambda \in \Lambda} A_\lambda \) is open.
3. Suppose \(A_1, \ldots, A_n \subseteq X \) are open sets. If \(x \in \bigcap_{i=1}^n A_i \), then

\[
x \in A_1, x \in A_2, \ldots, x \in A_n
\]

so

\[
\exists \varepsilon_1, \ldots, \varepsilon_n > 0 \text{ s.t. } B_{\varepsilon_1}(x) \subseteq A_1, \ldots, B_{\varepsilon_n}(x) \subseteq A_n
\]

Let

\[
\varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_n\} > 0
\]
(Note this is where we need the fact that we are taking a finite intersection. The infimum of an infinite set of positive numbers could be zero. And the intersection of an infinite collection of open sets need not be open.)

Then
\[B_\varepsilon(x) \subseteq B_{\varepsilon_1}(x) \subseteq A_1, \ldots, B_\varepsilon(x) \subseteq B_{\varepsilon_n}(x) \subseteq A_n \]

so
\[B_\varepsilon(x) \subseteq \bigcap_{i=1}^{n} A_i \]

which proves that \(\cap_{i=1}^{n} A_i \) is open.

\[\square \]

Definition 3

- The **interior** of \(A \), denoted \(\text{int} A \), is the largest open set contained in \(A \) (the union of all open sets contained in \(A \)).

- The **closure** of \(A \), denoted \(\overline{A} \), is the smallest closed set containing \(A \) (the intersection of all closed sets containing \(A \)).

- The **exterior** of \(A \), denoted \(\text{ext} A \), is the largest open set contained in \(X \setminus A \).

- The **boundary** of \(A \), denoted \(\partial A = (X \setminus A) \cap \overline{A} \)

Example: Let \(A = [0, 1] \cup (2, 3) \). Then

\[
\begin{align*}
\text{int} A &= (0, 1) \cup (2, 3) \\
\overline{A} &= [0, 1] \cup [2, 3] \\
\text{ext} A &= \text{int} (X \setminus A) \\
&= (-\infty, 0) \cup (1, 2) \cup (3, +\infty) \\
\partial A &= (X \setminus A) \cap \overline{A} \\
&= ((-\infty, 0] \cup [1, 2] \cup [3, +\infty)) \cap ([0, 1] \cup [2, 3]) \\
&= \{0, 1, 2, 3\}
\end{align*}
\]

Theorem 4 (Thm. 4.13) A set \(A \) in a metric space \((X, d)\) is closed if and only if

\[\{x_n\} \subseteq A, x_n \to x \in X \Rightarrow x \in A \]

Proof: Suppose \(A \) is closed. Then \(X \setminus A \) is open. Consider a convergent sequence \(x_n \to x \in X \), with \(x_n \in A \) for all \(n \). If \(x \not\in A \), \(x \in X \setminus A \), so there is some \(\varepsilon > 0 \) such that \(B_\varepsilon(x) \subseteq X \setminus A \). (See Figure 2.) Since \(x_n \to x \), there exists \(N(\varepsilon) \) such that

\[n > N(\varepsilon) \Rightarrow x_n \in B_\varepsilon(x) \]

\[\Rightarrow x_n \in X \setminus A \]

\[\Rightarrow x_n \not\in A \]

\[^1\text{This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12} \]
contradiction. Therefore,
\[x_n \subset A, x_n \to x \in X \Rightarrow x \in A \]

Conversely, suppose
\[\{x_n\} \subset A, x_n \to x \in X \Rightarrow x \in A \]

We need to show that \(A \) is closed, i.e. \(X \setminus A \) is open. Suppose not, so \(X \setminus A \) is not open. Then there exists \(x \in X \setminus A \) such that for every \(\varepsilon > 0 \),
\[B_{\varepsilon}(x) \not\subseteq X \setminus A \]
so there exists \(y \in B_{\varepsilon}(x) \) such that \(y \notin X \setminus A \). Then \(y \in A \), hence
\[B_{\varepsilon}(x) \cap A \neq \emptyset \]

See Figure 3. Construct a sequence \(\{x_n\} \) as follows: for each \(n \), choose \(x_n \in B_{\frac{1}{n}}(x) \cap A \). Given \(\varepsilon > 0 \), we can find \(N(\varepsilon) \) such that \(N(\varepsilon) > \frac{1}{\varepsilon} \) by the Archimedean Property, so \(n > N(\varepsilon) \Rightarrow \frac{1}{n} < \frac{1}{N(\varepsilon)} < \varepsilon \), so \(x_n \to x \). Then \(\{x_n\} \subset A, x_n \to x \), so \(x \in A \), contradiction. Therefore, \(X \setminus A \) is open, so \(A \) is closed. ■

Section 2.5. Limits of Functions

Note: Read this section of de la Fuente on your own.

Note that we may have \(\lim_{x \to a} f(x) = y \) even though

- \(f \) is not defined at \(a \); or
- \(f \) is defined at \(a \) but \(f(a) \neq y \).

The existence and value of the limit depends on values of \(f \) near \(a \) but not at \(a \).

Section 2.6. Continuity in Metric Spaces

Definition 5 Let \((X, d) \) and \((Y, \rho) \) be metric spaces. A function \(f : X \to Y \) is **continuous at a point** \(x_0 \in X \) if \(\forall \varepsilon > 0 \ \exists \delta(x_0, \varepsilon) > 0 \) s.t. \(d(x, x_0) < \delta(x_0, \varepsilon) \Rightarrow \rho(f(x), f(x_0)) < \varepsilon \).

\(f \) is **continuous** if it is continuous at every element of its domain.

Note that \(\delta \) depends on \(x_0 \) and \(\varepsilon \).

This is a straightforward generalization of the definition of continuity in \(\mathbb{R} \). Continuity at \(x_0 \) requires:

- \(f(x_0) \) is defined; and
• either

 - \(x_0 \) is an isolated point of \(X \), i.e. \(\exists \varepsilon > 0 \) s.t. \(B_\varepsilon(x) = \{x\} \); or
 - \(\lim_{x \to x_0} f(x) \) exists and equals \(f(x_0) \)

Suppose \(f : X \to Y \) and \(A \subseteq Y \). Define \(f^{-1}(A) = \{x \in X : f(x) \in A\} \).

Theorem 6 (Thm. 6.14) Let \((X, d)\) and \((Y, \rho)\) be metric spaces, and \(f : X \to Y \). Then \(f \) is continuous if and only if

\[
f^{-1}(A) \text{ is open in } X \quad \forall A \subseteq Y \text{ s.t. } A \text{ is open in } Y
\]

Proof: Suppose \(f \) is continuous. Given \(A \subseteq Y \), \(A \) open, we must show that \(f^{-1}(A) \) is open in \(X \). Suppose \(x_0 \in f^{-1}(A) \). Let \(y_0 = f(x_0) \in A \). Since \(A \) is open, we can find \(\varepsilon > 0 \) such that \(B_\varepsilon(y_0) \subseteq A \). Since \(f \) is continuous, there exists \(\delta > 0 \) such that

\[
d(x, x_0) < \delta \quad \Rightarrow \quad \rho(f(x), f(x_0)) < \varepsilon
\]

\[
\Rightarrow \quad f(x) \in B_\varepsilon(y_0)
\]

\[
\Rightarrow \quad f(x) \in A
\]

\[
\Rightarrow \quad x \in f^{-1}(A)
\]

so \(B_\delta(x_0) \subseteq f^{-1}(A) \), so \(f^{-1}(A) \) is open. (See Figure 4.)

Conversely, suppose \(f^{-1}(A) \) is open in \(X \) \(\forall A \subseteq Y \) s.t. \(A \) is open in \(Y \)

We need to show that \(f \) is continuous. Let \(x_0 \in X, \varepsilon > 0 \). Let \(A = B_\varepsilon(f(x_0)) \). \(A \) is an open ball, hence an open set, so \(f^{-1}(A) \) is open in \(X \). \(x_0 \in f^{-1}(A) \), so there exists \(\delta > 0 \) such that \(B_\delta(x_0) \subseteq f^{-1}(A) \). (See Figure 5.)

\[
d(x, x_0) < \delta \quad \Rightarrow \quad x \in B_\delta(x_0)
\]

\[
\Rightarrow \quad x \in f^{-1}(A)
\]

\[
\Rightarrow \quad f(x) \in A
\]

\[
\Rightarrow \quad \rho(f(x), f(x_0)) < \varepsilon
\]

Thus, we have shown that \(f \) is continuous at \(x_0 \); since \(x_0 \) is an arbitrary point in \(X \), \(f \) is continuous.

Theorem 7 (Slightly weaker version of Thm. 6.10) Let \((X, d_X)\), \((Y, d_Y)\) and \((Z, d_Z)\) be metric spaces. If \(f : X \to Y \) and \(g : Y \to Z \) are continuous, then \(g \circ f : X \to Z \) is continuous.

\[\text{2We give a direct proof; de la Fuente works via closed sets.}\]
Proof: Suppose \(A \subseteq Z \) is open. Since \(g \) is continuous, \(g^{-1}(A) \) is open in \(Y \); since \(f \) is continuous, \(f^{-1}(g^{-1}(A)) \) is open in \(X \).

We claim that

\[
f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)
\]

Observe

\[
x \in f^{-1}(g^{-1}(A)) \iff f(x) \in g^{-1}(A) \\
\iff g(f(x)) \in A \\
\iff (g \circ f)(x) \in A \\
\iff x \in (g \circ f)^{-1}(A)
\]

which establishes the claim. This shows that \((g \circ f)^{-1}(A) \) is open in \(X \), so \(g \circ f \) is continuous.

\[\blacksquare\]

Definition 8 [Uniform Continuity] Suppose \(f : (X, d) \rightarrow (Y, \rho) \). \(f \) is **uniformly continuous** if

\[
\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \text{s.t.} \ \forall x_0 \in X, \ d(x, x_0) < \delta(\varepsilon) \Rightarrow \rho(f(x), f(x_0)) < \varepsilon
\]

Notice the important contrast with continuity: \(f \) is continuous means

\[
\forall x_0 \in X, \varepsilon > 0 \ \exists \delta(x_0, \varepsilon) > 0 \ \text{s.t.} \ d(x, x_0) < \delta(x_0, \varepsilon) \Rightarrow \rho(f(x), f(x_0)) < \varepsilon
\]

Example: Consider

\[
f(x) = \frac{1}{x}, \ x \in (0, 1]\]

\(f \) is continuous (why?). We will show that \(f \) is **not** uniformly continuous. Fix \(\varepsilon > 0 \) and \(x_0 \in (0, 1] \). If \(x = \frac{x_0}{1+\varepsilon x_0} \), then

\[
1 + \varepsilon x_0 > 1
\]

\[
x = \frac{x_0}{1 + \varepsilon x_0} < x_0
\]

\[
\frac{1}{x} - \frac{1}{x_0} > 0
\]

\[
|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right|
\]

\[
= \frac{1}{x} - \frac{1}{x_0}
\]

\[
= \frac{1 + \varepsilon x_0}{x_0} - \frac{1}{x_0}
\]

\[
= \frac{\varepsilon x_0}{x_0}
\]

\[
= \varepsilon
\]
Thus, $\delta(x_0, \varepsilon)$ must be chosen small enough so that

$$\left| \frac{x_0}{1 + \varepsilon x_0} - x_0 \right| \geq \delta(x_0, \varepsilon)$$

$$\delta(x_0, \varepsilon) \leq x_0 - \frac{x_0}{1 + \varepsilon x_0}$$

$$= \frac{\varepsilon(x_0)^2}{1 + \varepsilon x_0}$$

$$< \varepsilon(x_0)^2$$

which converges to zero as $x_0 \to 0$. (See Figure 6.) So there is no $\delta(\varepsilon)$ that will work for all $x_0 \in (0, 1]$.

Example: If $f : \mathbb{R} \to \mathbb{R}$ and $f'(x)$ is defined and uniformly bounded on an interval $[a, b]$, then $f(x)$ is uniformly continuous on $[a, b]$. However, even a function with an unbounded derivative may be uniformly continuous. Consider

$$f(x) = \sqrt{x}, \ x \in [0, 1]$$

f is continuous (why?). We will show that f is uniformly continuous. Given $\varepsilon > 0$, let $\delta = \varepsilon^2$. Then given any $x_0 \in [0, 1]$, $|x - x_0| < \delta$ implies by the Fundamental Theorem of Calculus

$$|f(x) - f(x_0)| = \left| \int_{x_0}^{x} \frac{1}{2\sqrt{t}} \, dt \right|$$

$$\leq \int_{0}^{|x-x_0|} \frac{1}{2\sqrt{t}} \, dt$$

$$= \sqrt{|x-x_0|}$$

$$< \sqrt{\delta}$$

$$= \sqrt{\varepsilon^2}$$

$$= \varepsilon$$

Thus, f is uniformly continuous on $[0, 1]$, even though $f'(x) \to \infty$ as $x \to 0$.

Definition 9 Let X, Y be normed vector spaces, $E \subseteq X$. $f : X \to Y$ is **Lipschitz on E** if

$$\exists K > 0 \text{ s.t. } \|f(x) - f(z)\|_Y \leq K\|x - z\|_X \ \forall x, z \in E$$

f is **locally Lipschitz on E** if

$$\forall x_0 \in E \ \exists \varepsilon > 0 \text{ s.t. } f \text{ is Lipschitz on } B_{\varepsilon}(x_0) \cap E$$

7
Remark: de la Fuente only defines Lipschitz and locally Lipschitz in the context of normed vector spaces. The notions can also be defined analogously in metric spaces as follows: Let (X, d) and $(Y, ρ)$ be metric spaces, $E ⊆ X$. $f : X → Y$ is Lipschitz on E if

$$\exists K > 0 \text{ s.t. } ρ(f(x), f(z)) \leq Kd(x, z) \ \forall x, z ∈ E$$

Similarly, f is locally Lipschitz on E if

$$∀x_0 ∈ E \exists ε > 0 \text{ s.t. } f \text{ is Lipschitz on } B_ε(x_0) \cap E$$

Lipschitz continuity is stronger than either continuity or uniform continuity:

- locally Lipschitz $⇒$ continuous
- Lipschitz $⇒$ uniformly continuous

Every C^1 function is locally Lipschitz. (Recall that a function $f : \mathbb{R}^m → \mathbb{R}^n$ is said to be C^1 if all its first partial derivatives exist and are continuous.)

Definition 10 3 Let (X, d) and $(Y, ρ)$ be metric spaces. A function $f : X → Y$ is called a homeomorphism if it is one-to-one, onto, continuous, and its inverse function is continuous.

Now suppose that f is a homeomorphism and $U ⊂ X$. Let $g : Y → X$ be the inverse of f, so $g ∘ f : X → X$ is the identity on X, and $f ∘ g : Y → Y$ is the identity on Y.

$$y ∈ g^{-1}(U) ⇔ g(y) = f^{-1}(y) ∈ U$$

$$⇔ y ∈ f(U)$$

U open in X $⇒$ $g^{-1}(U)$ is open in $(f(X), ρ)$

$⇒ f(U)$ is open in $(f(X), ρ)$

This says that (X, d) and $(f(X), ρ|_{f(X)})$ are identical in terms of properties that can be characterized solely in terms of open sets; such properties are called “topological properties.”

3This is the standard definition; de la Fuente instead omits the requirement that f be onto, and requires that f^{-1} be continuous on $f(X)$. See the Corrections handout for a correction to Theorem 6.21
Figure 1: A is open: for every $x \in A$ there is some $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$. B is not open: for x depicted in the picture $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq B$.
Figure 2: Sequences and closed sets
Figure 3: Sequences and closed sets
Figure 4: Proof of Theorem 6.
Figure 5: Proof of Theorem 6.
Figure 6: $f(x) = \frac{1}{x}$ is not uniformly continuous.