Economics 204 Summer/Fall 2016
 Lecture 4-Thursday July 28, 2016

Section 2.4. Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set $A \subseteq X$ is open if

$$
\forall x \in A \exists \varepsilon>0 \text { s.t. } B_{\varepsilon}(x) \subseteq A
$$

A set $C \subseteq X$ is closed if $X \backslash C$ is open.

See Figure 1.
Example: (a, b) is open in the metric space \mathbf{E}^{1} (\mathbf{R} with the usual Euclidean metric). Given $x \in(a, b), a<x<b$. Let

$$
\varepsilon=\min \{x-a, b-x\}>0
$$

Then

$$
\begin{aligned}
y \in B_{\varepsilon}(x) & \Rightarrow y \in(x-\varepsilon, x+\varepsilon) \\
& \subseteq(x-(x-a), x+(b-x)) \\
& =(a, b)
\end{aligned}
$$

so $B_{\varepsilon}(x) \subseteq(a, b)$, so (a, b) is open.
Notice that ε depends on x; in particular, ε gets smaller as x nears the boundary of the set.

Example: In $\mathbf{E}^{1},[a, b]$ is closed. $\mathbf{R} \backslash[a, b]=(-\infty, a) \cup(b, \infty)$ is a union of two open sets, which must be open.

Example: In the metric space $[0,1],[0,1]$ is open. With $[0,1]$ as the underlying metric space, $B_{\varepsilon}(0)=\{x \in[0,1]:|x-0|<\varepsilon\}=[0, \varepsilon)$.

Thus, openness and closedness depend on the underlying metric space as well as on the set.

Example: Most sets are neither open nor closed. For example, in $\mathbf{E}^{1},[0,1] \cup(2,3)$ is neither open nor closed.

Example: An open set may consist of a single point. For example, if $X=\mathbf{N}$ and $d(m, n)=$ $|m-n|$, then $B_{1 / 2}(1)=\{m \in \mathbf{N}:|m-1|<1 / 2\}=\{1\}$. Since 1 is the only element of the set $\{1\}$ and $B_{1 / 2}(1)=\{1\} \subseteq\{1\}$, the set $\{1\}$ is open.

Example: In any metric space (X, d) both \emptyset and X are open, and both \emptyset and X are closed. To see that \emptyset is open, note that the statement

$$
\forall x \in \emptyset \exists \varepsilon>0 B_{\varepsilon}(x) \subseteq \emptyset
$$

is vacuously true since there aren't any $x \in \emptyset$. To see that X is open, note that since $B_{\varepsilon}(x)$ is by definition $\{z \in X: d(z, x)<\varepsilon\}$, it is trivially contained in X. Since \emptyset is open, X is closed; since X is open, \emptyset is closed.

Example: Open balls are open sets. Suppose $y \in B_{\varepsilon}(x)$. Then $d(x, y)<\varepsilon$. Let $\delta=$ $\varepsilon-d(x, y)>0$. If $d(z, y)<\delta$, then

$$
\begin{aligned}
d(z, x) & \leq d(z, y)+d(y, x) \\
& <\delta+d(x, y) \\
& =\varepsilon-d(x, y)+d(x, y) \\
& =\varepsilon
\end{aligned}
$$

so $B_{\delta}(y) \subseteq B_{\epsilon}(x)$, so $B_{\varepsilon}(x)$ is open.

Theorem 2 (Thm. 4.2) Let (X, d) be a metric space. Then

1. \emptyset and X are both open, and both closed.
2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is open.
3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already shown this.
2. Suppose $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ is a collection of open sets.

$$
\begin{aligned}
x \in \bigcup_{\lambda \in \Lambda} A_{\lambda} & \Rightarrow \exists \lambda_{0} \in \Lambda \text { s.t. } x \in A_{\lambda_{0}} \\
& \Rightarrow \exists \varepsilon>0 \text { s.t. } B_{\varepsilon}(x) \subseteq A_{\lambda_{0}} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda}
\end{aligned}
$$

so $\cup_{\lambda \in \Lambda} A_{\lambda}$ is open.
3. Suppose $A_{1}, \ldots, A_{n} \subseteq X$ are open sets. If $x \in \cap_{i=1}^{n} A_{i}$, then

$$
x \in A_{1}, x \in A_{2}, \ldots, x \in A_{n}
$$

so

$$
\exists \varepsilon_{1}>0, \ldots, \varepsilon_{n}>0 \text { s.t. } B_{\varepsilon_{1}}(x) \subseteq A_{1}, \ldots, B_{\varepsilon_{n}}(x) \subseteq A_{n}
$$

Let

$$
\varepsilon=\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}>0
$$

(Note this is where we need the fact that we are taking a finite intersection. The infimum of an infinite set of positive numbers could be zero. And the intersection of an infinite collection of open sets need not be open.)
Then

$$
B_{\varepsilon}(x) \subseteq B_{\varepsilon_{1}}(x) \subseteq A_{1}, \ldots, B_{\varepsilon}(x) \subseteq B_{\varepsilon_{n}}(x) \subseteq A_{n}
$$

so

$$
B_{\varepsilon}(x) \subseteq \bigcap_{i=1}^{n} A_{i}
$$

which proves that $\cap_{i=1}^{n} A_{i}$ is open.

Definition 3 - The interior of A, denoted $\operatorname{int} A$, is the largest open set contained in A (the union of all open sets contained in A).

- The closure of A, denoted \bar{A}, is the smallest closed set containing A (the intersection of all closed sets containing A)
- The exterior of A, denoted ext A, is the largest open set contained in $X \backslash A$.
- The boundary of A, denoted $\partial A=\overline{(X \backslash A)} \cap \bar{A}$

Example: Let $A=[0,1] \cup(2,3)$. Then

$$
\begin{aligned}
\operatorname{int} A & =(0,1) \cup(2,3) \\
\bar{A} & =[0,1] \cup[2,3] \\
\operatorname{ext} A & =\operatorname{int}(X \backslash A) \\
& =(-\infty, 0) \cup(1,2) \cup(3,+\infty) \\
\partial A & =\overline{(X \backslash A)} \cap \bar{A} \\
& =((-\infty, 0] \cup[1,2] \cup[3,+\infty)) \cap([0,1] \cup[2,3]) \\
& =\{0,1,2,3\}
\end{aligned}
$$

Theorem 4 (Thm. 4.13) A set A in a metric space (X, d) is closed if and only if

$$
\left\{x_{n}\right\} \subset A, x_{n} \rightarrow x \in X \Rightarrow x \in A
$$

Proof: ${ }^{1}$ Suppose A is closed. Then $X \backslash A$ is open. Consider a convergent sequence $x_{n} \rightarrow$ $x \in X$, with $x_{n} \in A$ for all n. If $x \notin A, x \in X \backslash A$, so there is some $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq X \backslash A$. (See Figure 2.) Since $x_{n} \rightarrow x$, there exists $N(\varepsilon)$ such that

$$
\begin{aligned}
n>N(\varepsilon) & \Rightarrow x_{n} \in B_{\varepsilon}(x) \\
& \Rightarrow x_{n} \in X \backslash A \\
& \Rightarrow x_{n} \notin A
\end{aligned}
$$

[^0]contradiction. Therefore,
$$
x_{n} \subset A, x_{n} \rightarrow x \in X \Rightarrow x \in A
$$

Conversely, suppose

$$
\left\{x_{n}\right\} \subset A, x_{n} \rightarrow x \in X \Rightarrow x \in A
$$

We need to show that A is closed, i.e. $X \backslash A$ is open. Suppose not, so $X \backslash A$ is not open. Then there exists $x \in X \backslash A$ such that for every $\varepsilon>0$,

$$
B_{\varepsilon}(x) \nsubseteq X \backslash A
$$

so there exists $y \in B_{\varepsilon}(x)$ such that $y \notin X \backslash A$. Then $y \in A$, hence

$$
B_{\varepsilon}(x) \cap A \neq \emptyset
$$

See Figure 3. Construct a sequence $\left\{x_{n}\right\}$ as follows: for each n, choose $x_{n} \in B_{\frac{1}{n}}(x) \cap A$. Given $\varepsilon>0$, we can find $N(\varepsilon)$ such that $N(\varepsilon)>\frac{1}{\varepsilon}$ by the Archimedean Property, so $n>N(\varepsilon) \Rightarrow \frac{1}{n}<\frac{1}{N(\varepsilon)}<\varepsilon$, so $x_{n} \rightarrow x$. Then $\left\{x_{n}\right\} \subseteq A, x_{n} \rightarrow x$, so $x \in A$, contradiction. Therefore, $X \backslash A$ is open, so A is closed.

Section 2.5. Limits of Functions

Note: Read this section of de la Fuente on your own.
Note that we may have $\lim _{x \rightarrow a} f(x)=y$ even though

- f is not defined at a; or
- f is defined at a but $f(a) \neq y$.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6. Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, ρ) be metric spaces. A function $f: X \rightarrow Y$ is continuous at a point $x_{0} \in X$ if $\forall \varepsilon>0 \exists \delta\left(x_{0}, \varepsilon\right)>0$ s.t. $d\left(x, x_{0}\right)<\delta\left(x_{0}, \varepsilon\right) \Rightarrow \rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$.
f is continuous if it is continuous at every element of its domain.

Note that δ depends on x_{0} and ε.
This is a straightforward generalization of the definition of continuity in R. Continuity at x_{0} requires:

- $f\left(x_{0}\right)$ is defined; and
- either
- x_{0} is an isolated point of X, i.e. $\exists \varepsilon>0$ s.t. $B_{\varepsilon}(x)=\{x\}$; or
$-\lim _{x \rightarrow x_{0}} f(x)$ exists and equals $f\left(x_{0}\right)$

Suppose $f: X \rightarrow Y$ and $A \subseteq Y$. Define $f^{-1}(A)=\{x \in X: f(x) \in A\}$.

Theorem 6 (Thm. 6.14) Let (X, d) and (Y, ρ) be metric spaces, and $f: X \rightarrow Y$. Then f is continuous if and only if

$$
f^{-1}(A) \text { is open in } X \forall A \subseteq Y \text { s.t. } A \text { is open in } Y
$$

Proof: ${ }^{2}$ Suppose f is continuous. Given $A \subseteq Y, A$ open, we must show that $f^{-1}(A)$ is open in X. Suppose $x_{0} \in f^{-1}(A)$. Let $y_{0}=f\left(x_{0}\right) \in A$. Since A is open, we can find $\varepsilon>0$ such that $B_{\varepsilon}\left(y_{0}\right) \subseteq A$. Since f is continuous, there exists $\delta>0$ such that

$$
\begin{aligned}
d\left(x, x_{0}\right)<\delta & \Rightarrow \rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon \\
& \Rightarrow f(x) \in B_{\varepsilon}\left(y_{0}\right) \\
& \Rightarrow f(x) \in A \\
& \Rightarrow x \in f^{-1}(A)
\end{aligned}
$$

so $B_{\delta}\left(x_{0}\right) \subseteq f^{-1}(A)$, so $f^{-1}(A)$ is open. (See Figure 4.)
Conversely, suppose

$$
f^{-1}(A) \text { is open in } X \forall A \subseteq Y \text { s.t. } A \text { is open in } Y
$$

We need to show that f is continuous. Let $x_{0} \in X, \varepsilon>0$. Let $A=B_{\varepsilon}\left(f\left(x_{0}\right)\right)$. A is an open ball, hence an open set, so $f^{-1}(A)$ is open in $X . x_{0} \in f^{-1}(A)$, so there exists $\delta>0$ such that $B_{\delta}\left(x_{0}\right) \subseteq f^{-1}(A)$. (See Figure 5.)

$$
\begin{aligned}
d\left(x, x_{0}\right)<\delta & \Rightarrow x \in B_{\delta}\left(x_{0}\right) \\
& \Rightarrow x \in f^{-1}(A) \\
& \Rightarrow f(x) \in A \\
& \Rightarrow \rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon
\end{aligned}
$$

Thus, we have shown that f is continuous at x_{0}; since x_{0} is an arbitrary point in X, f is continuous.

Theorem 7 (Slightly weaker version of Thm. 6.10) Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then $g \circ f: X \rightarrow Z$ is continuous.

[^1]Proof: Suppose $A \subseteq Z$ is open. Since g is continuous, $g^{-1}(A)$ is open in Y; since f is continuous, $f^{-1}\left(g^{-1}(A)\right)$ is open in X.

We claim that

$$
f^{-1}\left(g^{-1}(A)\right)=(g \circ f)^{-1}(A)
$$

Observe

$$
\begin{aligned}
x \in f^{-1}\left(g^{-1}(A)\right) & \Leftrightarrow f(x) \in g^{-1}(A) \\
& \Leftrightarrow g(f(x)) \in A \\
& \Leftrightarrow(g \circ f)(x) \in A \\
& \Leftrightarrow x \in(g \circ f)^{-1}(A)
\end{aligned}
$$

which establishes the claim. This shows that $(g \circ f)^{-1}(A)$ is open in X, so $g \circ f$ is continuous.

Definition 8 [Uniform Continuity] Suppose $f:(X, d) \rightarrow(Y, \rho) . f$ is uniformly continuous if

$$
\forall \varepsilon>0 \exists \delta(\varepsilon)>0 \text { s.t. } \forall x_{0} \in X, \quad d\left(x, x_{0}\right)<\delta(\varepsilon) \Rightarrow \rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon
$$

Notice the important contrast with continuity: f is continuous means

$$
\forall x_{0} \in X, \varepsilon>0 \exists \delta\left(x_{0}, \varepsilon\right)>0 \text { s.t. } d\left(x, x_{0}\right)<\delta\left(x_{0}, \varepsilon\right) \Rightarrow \rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon
$$

Example: Consider

$$
f(x)=\frac{1}{x}, \quad x \in(0,1]
$$

f is continuous (why?). We will show that f is not uniformly continuous. Fix $\varepsilon>0$ and $x_{0} \in(0,1]$. If $x=\frac{x_{0}}{1+\varepsilon x_{0}}$, then

$$
\begin{aligned}
1+\varepsilon x_{0} & >1 \\
x=\frac{x_{0}}{1+\varepsilon x_{0}} & <x_{0} \\
\frac{1}{x}-\frac{1}{x_{0}} & >0 \\
\left|f(x)-f\left(x_{0}\right)\right| & =\left|\frac{1}{x}-\frac{1}{x_{0}}\right| \\
& =\frac{1}{x}-\frac{1}{x_{0}} \\
& =\frac{1+\varepsilon x_{0}}{x_{0}}-\frac{1}{x_{0}} \\
& =\frac{\varepsilon x_{0}}{x_{0}} \\
& =\varepsilon
\end{aligned}
$$

Thus, $\delta\left(x_{0}, \varepsilon\right)$ must be chosen small enough so that

$$
\begin{aligned}
& \left|\frac{x_{0}}{1+\varepsilon x_{0}}-x_{0}\right| \geq \delta\left(x_{0}, \varepsilon\right) \\
& \begin{aligned}
\delta\left(x_{0}, \varepsilon\right) & \leq x_{0}-\frac{x_{0}}{1+\varepsilon x_{0}} \\
& =\frac{\varepsilon\left(x_{0}\right)^{2}}{1+\varepsilon x_{0}} \\
& <\varepsilon\left(x_{0}\right)^{2}
\end{aligned}
\end{aligned}
$$

which converges to zero as $x_{0} \rightarrow 0$. (See Figure 6.) So there is no $\delta(\varepsilon)$ that will work for all $x_{0} \in(0,1]$.

Example: If $f: \mathbf{R} \rightarrow \mathbf{R}$ and $f^{\prime}(x)$ is defined and uniformly bounded on an interval $[a, b]$, then $f(x)$ is uniformly continuous on $[a, b]$. However, even a function with an unbounded derivative may be uniformly continuous. Consider

$$
f(x)=\sqrt{x}, \quad x \in[0,1]
$$

f is continuous (why?). We will show that f is uniformly continuous. Given $\varepsilon>0$, let $\delta=\varepsilon^{2}$. Then given any $x_{0} \in[0,1],\left|x-x_{0}\right|<\delta$ implies by the Fundamental Theorem of Calculus

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right| & =\left|\int_{x_{0}}^{x} \frac{1}{2 \sqrt{t}} d t\right| \\
& \leq \int_{0}^{\left|x-x_{0}\right|} \frac{1}{2 \sqrt{t}} d t \\
& =\sqrt{\left|x-x_{0}\right|} \\
& <\sqrt{\delta} \\
& =\sqrt{\varepsilon^{2}} \\
& =\varepsilon
\end{aligned}
$$

Thus, f is uniformly continuous on $[0,1]$, even though $f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow 0$.

Definition 9 Let X, Y be normed vector spaces, $E \subseteq X . f: X \rightarrow Y$ is Lipschitz on E if

$$
\exists K>0 \text { s.t. }\|f(x)-f(z)\|_{Y} \leq K\|x-z\|_{X} \quad \forall x, z \in E
$$

f is locally Lipschitz on E if

$$
\forall x_{0} \in E \exists \varepsilon>0 \text { s.t. } f \text { is Lipschitz on } B_{\varepsilon}\left(x_{0}\right) \cap E
$$

Remark: de la Fuente only defines Lipschitz and locally Lipschitz in the context of normed vector spaces. The notions can also be defined analogously in metric spaces as follows: Let (X, d) and (Y, ρ) be metric spaces, $E \subseteq X . f: X \rightarrow Y$ is Lipschitz on E if

$$
\exists K>0 \text { s.t. } \rho(f(x), f(z)) \leq K d(x, z) \quad \forall x, z \in E
$$

Similarly, f is locally Lipschitz on E if

$$
\forall x_{0} \in E \exists \varepsilon>0 \text { s.t. } f \text { is Lipschitz on } B_{\varepsilon}\left(x_{0}\right) \cap E
$$

Lipschitz continuity is stronger than either continuity or uniform continuity:

$$
\begin{aligned}
\text { locally Lipschitz } & \Rightarrow \text { continuous } \\
\text { Lipschitz } & \Rightarrow \text { uniformly continuous }
\end{aligned}
$$

Every C^{1} function is locally Lipschitz. (Recall that a function $f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ is said to be C^{1} if all its first partial derivatives exist and are continuous.)

Definition $10{ }^{3}$ Let (X, d) and (Y, ρ) be metric spaces. A function $f: X \rightarrow Y$ is called a homeomorphism if it is one-to-one, onto, continuous, and its inverse function is continuous.

Now suppose that f is a homeomorphism and $U \subset X$. Let $g: Y \rightarrow X$ be the inverse of f, so $g \circ f: X \rightarrow X$ is the identity on X, and $f \circ g: Y \rightarrow Y$ is the identity on Y.

$$
\begin{aligned}
y \in g^{-1}(U) & \Leftrightarrow g(y)=f^{-1}(y) \in U \\
& \Leftrightarrow y \in f(U) \\
U \text { open in } X & \Rightarrow g^{-1}(U) \text { is open in }(f(X), \rho) \\
& \Rightarrow f(U) \text { is open in }(f(X), \rho)
\end{aligned}
$$

This says that (X, d) and $\left(f(X),\left.\rho\right|_{f(X)}\right)$ are identical in terms of properties that can be characterized solely in terms of open sets; such properties are called "topological properties."

[^2]

Figure 1: A is open: for every $x \in A$ there is some $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq A$. B is not open: for x depicted in the picture $\nexists \varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq B$.

Figure 2: Sequences and closed sets

Figure 3: Sequences and closed sets

Figure 4: Proof of Theorem 6.

Figure 5: Proof of Theorem 6.

Figure 6: $f(x)=\frac{1}{x}$ is not uniformly continuous.

[^0]: ${ }^{1}$ This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12

[^1]: ${ }^{2}$ We give a direct proof; de la Fuente works via closed sets.

[^2]: ${ }^{3}$ This is the standard definition; de la Fuente instead omits the requirement that f be onto, and requires that f^{-1} be continous on $f(X)$. See the Corrections handout for a correction to Theorem 6.21

