Econ 204 – Problem Set 2

Due Tuesday, August 2

- 1. Prove that the set of cluster points of a sequence $\{x_k\}$ is closed.
- 2. Let X be an arbitrary set, and $A, B \subset X$, such that $int A = int B = \emptyset$.
 - (a) Prove that if A is closed in X, then $int(A \cup B) = \emptyset$
 - (b) If A is not necessarily closed the previous statement is not true. Give an example where $int(A \cup B) \neq \emptyset$ in this case.
- 3. Consider l^{∞} , the set of bounded sequences (so $a \in l^{\infty}$ if and only if $a = (a_1, a_2, \ldots)$ with $a_i \in \mathbb{R}$ for all i and there exists some $M < \infty$ such that $|a_i| \leq M$ for all i).
 - (a) Show that l^{∞} is a vector space over \mathbb{R} .
 - (b) Show that the function $f(a) = \sup_i |a_i|$ defines a norm on this vector space.
 - (c) Consider the subspace l^0 of sequences with only a finite number of nonzero elements (so $a = (a_1, a_2, ...) \in l^0$ if and only if there exists some $M < \infty$ such that $a_i = 0$ for all $i \ge M$). Does this define a closed subspace of l^{∞} ?
- 4. Prove that any bounded sequence in \mathbb{R}^2 has a convergent subsequence!
- 5. Let (X, d) be the space of continuous real-valued functions on a closed interval [0, b] with the metric induced by the sup norm, i.e. X = C([0, b]) and $d(f, g) = \max_{x} |f(x) g(x)|$, for some b < 1. Let be $T: X \to X$:

$$(Tf)(x) = \int_0^x f(u)du + g(t),$$

for some continuous function $g : [0, b] \to \mathbb{R}$. Prove that T has a unique fixed point. (Note that for the Contraction Mapping Theorem, you need to show that (X, d) is a complete metric space. You might want to use that \mathbb{R} is complete.)