Econ 204 - Problem Set 4

Due Tuesday, August 9.

1. Determine whether or not each of the following sets is a vector space. In case it is, find the dimension of the space and a Hamel basis for it.
(a) The set of solutions in \mathbb{R}^{3} to the following system of linear equations, with vector addition and scalar multiplication defined in the usual way

$$
\begin{aligned}
& x_{1}-5 x_{2}+2 x_{3}=0 \\
& 5 x_{1}+3 x_{2}-x_{3}=0
\end{aligned}
$$

(b) The set of $n \times n$ matrices having a trace equal to one, with matrix addition and scalar multiplication defined in the usual way.
(c) The set of $m \times n$ matrices having all their elements sum-up to zero, with matrix addition and scalar multiplication defined in a usual way.
(d) The set of 2×1 matrices with real elements, with addition and scalar multiplication defined as

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}=\binom{x_{1}-y_{1}}{x_{2}-y_{2}} \\
\alpha\binom{x_{1}}{x_{2}}=\binom{\alpha x_{1}}{\alpha x_{2}}
\end{gathered}
$$

(e) All strictly positive reals $\mathbb{R}_{++}=\{x \in \mathbb{R}: x>0\}$ with vector addition defined as $x+y=x y$ using the multiplication in the one dimensional Euclidian space and scalar multiplication defined as $\alpha x=x^{\alpha}$.
2. A linear transformation $T: \mathbb{R}^{k}, \rightarrow \mathbb{R}^{k}$ has the property that $T^{n}=0$ for some integer $n>0$.
(a) Show that T is not invertible.
(b) Show that $T+I$ is invertible. (Hint: the inverse is a polynomial function of T)
3. Prove that any set of pairwise orthogonal nonzero vectors is linearly independent.
4. (a) Let T be clockwise rotation by 90 and halving in length in \mathbb{R}^{2}. Find the matrix representation $M t x_{W, V}(T)$ of T given bases:
i. $W=V=\{(1,0),(0,1)\}$.
ii. $W=V=\{(1,1),(1,-1)\}$.
iii. $W=\{(1,0),(0,1)\}, V=\{(1,1),(1,-1)\}$.
iv. $W=\{(1,1),(1,-1)\}, V=\{(1,0),(0,1)\}$.
(b) Let T be projection on to the horizontal axis in \mathbb{R}^{2}. Find the matrix representation $M t x_{W, V}(T)$ of T given bases:
i. $W=V=\{(1,0),(0,1)\}$.
ii. $W=\{(1,1),(1,-1)\}, V=\{(1,0),(0,1)\}$.
(c) Are either of the above transformations injective? surjective? What are their kernels and ranges? (One line answers are fine, no detailed proofs required.)

Solution

5. Suppose that V is finite dimensional and that $T \in L(V, W)$ (W is not necessarily finite-dimensional). Prove that there exists a subspace U of V such that $\operatorname{Ker}(T) \cap U=\{0\}$ and that $\operatorname{Im}(T)=\{T u: u \in U\}$.
