Econ 204 - Problem Set 5

Due Friday, August 12

1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable function. If $f(a)=0$ and $\left|f^{\prime}(x)\right| \leq A|f(x)|$ for some real number A, show that $f(x)=0$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Prove that $f^{\prime}(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).
3. If $a_{0}+\frac{1}{2} a_{1}+\cdots+\frac{1}{n} a_{n-1}+\frac{1}{n+1} a_{n}=0$, where a_{0}, \ldots, a_{n} are real constants, prove that the equation

$$
a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .
4. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable for all $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove

$$
\lim _{x \rightarrow \infty}[f(x+1)-f(x)] \rightarrow 0
$$

5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $F(x, y)=\left(e^{y} \cos (x), e^{y} \sin (x)\right) .{ }^{1}$
(i) Show that F satisfies the prerequisites of the Inverse Function Theorem for all $(x, y) \in \mathbb{R}^{2}$ (and is therefore locally injective everywhere) but F is not globally injective.
(ii) Compute the Jacobian of the local inverse of F and evaluate it at $F\left(\frac{\pi}{3}, 0\right)$.
(iii) Find an explicit formula for the continuous inverse of F mapping a neighborhood of $F\left(\frac{\pi}{3}, 0\right)$ into a neighborhood of $\left(\frac{\pi}{3}, 0\right)$ and verify that its Jacobian at $F\left(\frac{\pi}{3}, 0\right)$ equals the one you calculated in (ii).
[^0]
[^0]: ${ }^{1}$ In this problem, take the standard trigonmetric identities as given.

