1. Consider the function \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) given by
\[
f(x_1, x_2) = (x_1^2 + x_2 + 1, x_1x_2)
\]

(a) At which points can we apply the inverse function theorem?

(b) Let \(x = (x_1, x_2) \) be one of the points you found in (a). We know from the Inverse Function Theorem that in some neighborhood of \(x \), \(f \) has an inverse. What is the derivative of that inverse at \(f(x) \)?

2. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a \(C^1 \) function. Define \(F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) by
\[
F(x, \omega) = f(x) + \omega
\]
Show that there is a set \(\Omega_0 \subset \mathbb{R}^n \) of Lebesgue measure zero such that if \(\omega \not\in \Omega_0 \) then for each \(x_0 \) satisfying \(F(x_0, \omega_0) = 0 \) there is an open set \(U \) containing \(x_0 \), an open set \(V \) containing \(\omega_0 \), and a \(C^1 \) function \(h : V \to U \) such that for all \(\omega \in V \), \(x = h(\omega) \) is the unique element of \(U \) satisfying \(F(x, \omega) = 0 \).

3. Suppose \(\Gamma : X \to 2^Y \) is a correspondence defined by \(\Gamma(x) = \{ f_1(x), \ldots, f_N(x) \} \) where \(f_i : X \to Y \) is a continuous function for each \(i \in \{1, \ldots, N\} \). Prove that \(\Gamma \) is both uhc and lhc.

4. Let \(A \) be a nonempty, compact and convex subset of \(\mathbb{R}^2 \) such that if \((x, y) \in A \) for some \(x, y \in \mathbb{R} \) then there exists some \(z \in \mathbb{R} \) such that \((y, z) \in A \). Prove that \((x^*, x^*) \in A \) for some \(x^* \in \mathbb{R} \). (Hint: Use Kakutani’s Fixed Point Theorem.)

5. Let \(A \) and \(B \) be nonempty, convex subsets of \(\mathbb{R}^n \) with \(\text{int } A \neq \emptyset \). Using the Separating Hyperplane Theorem, prove that there exists \(p \in \mathbb{R}^n \)
with \(p \neq 0 \) such that \(\sup p \cdot A \leq \inf p \cdot B \) if and only if \(\text{int} A \cap B = \emptyset \).

(Hint: You might want to use the result of Theorem 1.11 in de la Fuente p. 23.)

6. Consider the second order linear differential equation given by

\[
y'' = -y - y'
\]

(a) Show how this equation can be rewritten as the following first order linear differential equation of two variables:

\[
\bar{x}'(t) = A\bar{x}(t),
\]

where \(A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \) and \(\bar{x} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \).

(b) Describe the solutions of the first order system (verbally) by analyzing the matrix \(A \).

(c) In a phase diagram, show the behavior of the system using the previous analysis and by solving for \(x_1'(t) = 0 \) and \(x_2'(t) = 0 \).

(d) Give the solution of the system when \(x_1(t_0) = 0 \) and \(x_2(t_0) = 1 \).