Econ 204 – Problem Set 6

Due 9am Monday, August 15 in Tamas mailbox.

1. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x_1, x_2) = (x_1^2 + x_2 + 1, x_1 x_2)$$

- (a) At which points can we apply the inverse function theorem?
- (b) Let $x = (x_1, x_2)$ be one of the points you found in (a). We know from the Inverse Function Theorem that in some neighborhood of x, f has an inverse. What is the derivative of that inverse at f(x)?
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function. Define $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by

 $F(x,\omega) = f(x) + \omega$

Show that there is a set $\Omega_0 \subset \mathbb{R}^n$ of Lebesgue measure zero such that if $\omega \notin \Omega_0$ then for each x_0 satisfying $F(x_0, \omega_0) = 0$ there is an open set U containing x_0 , an open set V containing ω_0 , and a C^1 function $h: V \to U$ such that for all $\omega \in V$, $x = h(\omega)$ is the unique element of U satisfying $F(x, \omega) = 0$.

- 3. Suppose $\Gamma : X \to 2^Y$ is a correspondence defined by $\Gamma(x) = \{f_1(x), \ldots, f_N(x)\}$ where $f_i : X \to Y$ is a continuous function for each $i \in \{1, \ldots, N\}$. Prove that Γ is both uhc and lhc.
- 4. Let A be a nonempty, compact and convex subset of \mathbb{R}^2 such that if $(x, y) \in A$ for some $x, y \in \mathbb{R}$ then there exists some $z \in \mathbb{R}$ such that $(y, z) \in A$. Prove that $(x^*, x^*) \in A$ for some $x^* \in \mathbb{R}$. (Hint: Use Kakutani's Fixed Point Theorem.)
- 5. Let A and B be nonempty, convex subsets of \mathbb{R}^n with int $A \neq \emptyset$. Using the Separating Hyperplane Theorem, prove that there exists $p \in \mathbb{R}^n$

with $p \neq 0$ such that sup $p \cdot A \leq \inf p \cdot B$ if and only if $\inf A \cap B = \emptyset$. (Hint: You might want to use the result of Theorem 1.11 in de la Fuente p. 234.)

6. Consider the second order linear differential equation given by

$$y'' = -y - y'$$

(a) Show how this equation can be rewritten as the following *first* order linear differential equation of two variables:

$$\bar{x}'(t) = A\bar{x}(t),$$

where
$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
 and $\bar{x} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$.

- (b) Describe the solutions of the first order system (verbally) by analyzing the matrix A.
- (c) In a phase diagram, show the behavior of the system using the previous analysis and by solving for $x'_1(t) = 0$ and $x'_2(t) = 0$.
- (d) Give the solution of the system when $x_1(t_0) = 0$ and $x_2(t_0) = 1$.