Econ 204 - Problem Set 6

Due 9am Monday, August 15 in Tamas mailbox.

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}+1, x_{1} x_{2}\right)
$$

(a) At which points can we apply the inverse function theorem?
(b) Let $x=\left(x_{1}, x_{2}\right)$ be one of the points you found in (a). We know from the Inverse Function Theorem that in some neighborhood of x, f has an inverse. What is the derivative of that inverse at $f(x)$?
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Define $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
F(x, \omega)=f(x)+\omega
$$

Show that there is a set $\Omega_{0} \subset \mathbb{R}^{n}$ of Lebesgue measure zero such that if $\omega \notin \Omega_{0}$ then for each x_{0} satisfying $F\left(x_{0}, \omega_{0}\right)=0$ there is an open set U containing x_{0}, an open set V containing ω_{0}, and a C^{1} function $h: V \rightarrow U$ such that for all $\omega \in V, x=h(\omega)$ is the unique element of U satisfying $F(x, \omega)=0$.
3. Suppose $\Gamma: X \rightarrow 2^{Y}$ is a correspondence defined by $\Gamma(x)=\left\{f_{1}(x), \ldots, f_{N}(x)\right\}$ where $f_{i}: X \rightarrow Y$ is a continuous function for each $i \in\{1, \ldots, N\}$. Prove that Γ is both uhc and lhc.
4. Let A be a nonempty, compact and convex subset of \mathbb{R}^{2} such that if $(x, y) \in A$ for some $x, y \in \mathbb{R}$ then there exists some $z \in \mathbb{R}$ such that $(y, z) \in A$. Prove that $\left(x^{*}, x^{*}\right) \in A$ for some $x^{*} \in \mathbb{R}$. (Hint: Use Kakutani's Fixed Point Theorem.)
5. Let A and B be nonempty, convex subsets of \mathbb{R}^{n} with int $A \neq \emptyset$. Using the Separating Hyperplane Theorem, prove that there exists $p \in \mathbb{R}^{n}$
with $p \neq 0$ such that $\sup p \cdot A \leq \inf p \cdot B$ if and only if int $A \cap B=\emptyset$. (Hint: You might want to use the result of Theorem 1.11 in de la Fuente p. 234.)
6. Consider the second order linear differential equation given by

$$
y^{\prime \prime}=-y-y^{\prime}
$$

(a) Show how this equation can be rewritten as the following first order linear differential equation of two variables:

$$
\bar{x}^{\prime}(t)=A \bar{x}(t)
$$

where $A=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]$ and $\bar{x}=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$.
(b) Describe the solutions of the first order system (verbally) by analyzing the matrix A.
(c) In a phase diagram, show the behavior of the system using the previous analysis and by solving for $x_{1}^{\prime}(t)=0$ and $x_{2}^{\prime}(t)=0$.
(d) Give the solution of the system when $x_{1}\left(t_{0}\right)=0$ and $x_{2}\left(t_{0}\right)=1$.

