Econ 204 2017

Lecture 10

Outline

1. Diagonalization of Real Symmetric Matrices
2. Application to Quadratic Forms
3. Linear Maps Between Normed Spaces

Announcements
- PS 3 due now
- Solutions due 2pm today
- PS 4 posted
- Last year’s exam posted on Saturday
How Might This Matter

• Why does diagonalizability matter?

Consider a two-dimensional linear difference equation:

\[
\begin{pmatrix}
 c_{t+1} \\
 k_{t+1}
\end{pmatrix} = \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix} \begin{pmatrix}
 c_t \\
 k_t
\end{pmatrix} \quad \forall t = 0, 1, 2, 3, \ldots
\]

given an initial condition \(c_0, k_0 \), or, setting

\[
y_t = \begin{pmatrix}
 c_t \\
 k_t
\end{pmatrix} \quad \forall t \quad \text{and} \quad B = \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

we can rewrite this more compactly as

\[
y_{t+1} = By_t \quad \forall t
\]

where \(b_{ij} \in \mathbb{R} \) each \(i, j \).
We want to find a solution \(y_t, \ t = 1, 2, 3, \ldots \) given initial condition \(y_0 \). (Why?)

Such a dynamical system will arise for example as a characterization of the solution to a standard infinite-horizon optimal growth problem (202a, lecture 2).

If \(B \) is diagonalizable, this can be easily solved after a change of basis. If \(B \) is diagonalizable, choose an invertible \(2 \times 2 \) real matrix \(P \) such that

\[
P^{-1}BP = D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}
\]

Then

\[
y_{t+1} = By_t \quad \forall t \iff P^{-1}y_{t+1} = P^{-1}By_t \quad \forall t \iff \begin{pmatrix} P^{-1}y_{t+1} \end{pmatrix} = \begin{pmatrix} P^{-1}BP \end{pmatrix} P^{-1}y_t \quad \forall t \iff \bar{y}_{t+1} = D\bar{y}_t \quad \forall t
\]

where \(\bar{y}_t = P^{-1}y_t \quad \forall t \)
where \(\bar{y}_t = P^{-1}y_t \; \forall t. \)

Since \(D \) is diagonal, after a change of basis to \(\bar{y}_t \), we need to solve two independent linear univariate difference equations, which is easy:

\[
\bar{y}_{it} = d_i^t \bar{y}_{i0} \quad \forall t
\]

- Not all real \(n \times n \) matrices are diagonalizable (not even all invertible \(n \times n \) matrices are)... so can we identify some classes that are? yesterday:
 - basis of eigenvectors \((\Rightarrow)\)
 - \(n \) distinct eigenvalues \((\Rightarrow)\)

- Some types of matrices appear more frequently than others – especially real symmetric \(n \times n \) matrices (matrix representation of second derivatives of \(C^2 \) functions, quadratic forms...).

 e.g. second order conditions in optimization, checking concavity and convexity, Taylor series approximation of function
Recall that an $n \times n$ real matrix A is symmetric if $a_{ij} = a_{ji}$ for all i, j, where a_{ij} is the $(i, j)^{th}$ entry of A.

Rest of this section: work in \mathbb{R}^n
- vector space
- norm
- inner product ($x \cdot y = \sum_{i=1}^{n} x_i y_i$)

Orthonormal Bases

Definition 1. Let

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

A basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n is orthonormal if $v_i \cdot v_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{if } i \neq j \end{cases}$

In other words, a basis is orthonormal if each basis element has unit length ($\|v_i\|^2 = v_i \cdot v_i = 1 \ \forall i$), and distinct basis elements are perpendicular ($v_i \cdot v_j = 0$ for $i \neq j$).
Orthonormal Bases

Remark: Suppose that \(x = \sum_{j=1}^{n} \alpha_j v_j \) where \(\{v_1, \ldots, v_n\} \) is an orthonormal basis of \(\mathbb{R}^n \). Then

\[
x \cdot v_k = \left(\sum_{j=1}^{n} \alpha_j v_j \right) \cdot v_k = \sum_{j=1}^{n} \alpha_j (v_j \cdot v_k) = \sum_{j=1}^{n} \alpha_j \delta_{jk} = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}
\]

so

\[
x = \sum_{j=1}^{n} (x \cdot v_j) v_j
\]
Orthonormal Bases

Example: The standard basis of \mathbb{R}^n is orthonormal.

$$\mathbf{e}_i = (0, \ldots, 1, 0, \ldots, 0) \quad i = 1, \ldots, n$$

(Why?)

e.g. \mathbb{R}^2: $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$

others? e.g. $\mathbf{v}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{5}})$, $\mathbf{v}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

also, many bases that are not orthonormal
Unitary Matrices

Recall that for a real $n \times m$ matrix A, A^\top denotes the transpose of A: the $(i, j)^{th}$ entry of A^\top is the $(j, i)^{th}$ entry of A.

So the i^{th} row of A^\top is the i^{th} column of A.

Definition 2. A real $n \times n$ matrix A is unitary if $A^\top = A^{-1}$.

Notice that by definition every unitary matrix is invertible.
Unitary Matrices

Theorem 1. A real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.

Proof. Let v_j denote the j^{th} column of A.

\[A^\top = A^{-1} \iff A^\top A = I = (\delta_{ij}) \iff v_i \cdot v_j = \delta_{ij} \quad \forall i, j \iff \{v_1, \ldots, v_n\} \text{ is orthonormal} \]

\[\square \]
If \(A \) is unitary, let \(V \) be the set of columns of \(A \) and \(W \) be the standard basis of \(\mathbb{R}^n \). Since \(A \) is unitary, it is invertible, so \(V \) is a basis of \(\mathbb{R}^n \). \(\{v_1, \ldots, v_n\} \) linearly independent.

\[
A^\top = A^{-1} = M_{tx_{V,W}(id)} = \text{change of basis from } W \text{ to } V
\]

Since \(V \) is orthonormal, the transformation between bases \(W \) and \(V \) preserves all geometry, including lengths and angles.
Thus: Let C be an $n \times n$ real symmetric matrix. Then C is diagonalizable. In addition,

$$C = P^{-1}DP$$

where D is a diagonal matrix and P is unitary.

Note: The diagonal elements d_1, \ldots, d_n of D are the eigenvalues of C.

- C has orthonormal eigenvectors v_1, \ldots, v_n that are a basis for \mathbb{R}^n.
Diagonalization of Real Symmetric Matrices

Theorem 2. Let $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and W be the standard basis of \mathbb{R}^n. **Suppose that** $\text{Mtx}_W(T)$ **is symmetric.** Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consisting of eigenvectors of T, so that $\text{Mtx}_W(T)$ is diagonalizable:

$$C \quad \text{Mtx}_W(T) = \text{Mtx}_{W,V}(\text{id}) \cdot \text{Mtx}_V(T) \cdot \text{Mtx}_{V,W}(\text{id})$$

where $\text{Mtx}_V T$ is diagonal and the change of basis matrices $\text{Mtx}_{V,W}(\text{id})$ and $\text{Mtx}_{W,V}(\text{id})$ are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. A brief outline is in the notes.
Quadratic Forms

Example: Let

\[f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2 \]

Let write as \(f(x) = x^T A x \), \(A \) symmetric

\[A = \begin{pmatrix} \alpha & \beta \\ \beta & 2 \end{pmatrix} \]

\[x^T A x = (x_1, x_2) \begin{pmatrix} \alpha & \beta \\ \beta & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]
so A is symmetric and

$$x^\top Ax = (x_1, x_2) \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1, x_2) \begin{pmatrix} \alpha x_1 + \frac{\beta x_2}{2} \\ \frac{\beta}{2} x_1 + \gamma x_2 \end{pmatrix}$$

$$= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

$$= f(x)$$

Notice $f(0) = 0$.

Can we determine anything about $f(x)$ for $x \neq 0$?

E.g., $f(x) > 0$ for x? Easy if $\beta = 0$...
Quadratic Forms

Consider a quadratic form

\[f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \alpha_{ii} x_i^2 + \sum_{i<j} \beta_{ij} x_i x_j \]

(1)

Let

\[\alpha_{ij} = \begin{cases} \frac{\beta_{ij}}{2} & \text{if } i < j \\ \frac{\beta_{ii}}{2} & \text{if } i > j \end{cases} \]

Let

\[A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix} \]

so \(f(x) = x^\top A x \)

real symmetric
Quadratic Forms

A is symmetric, so let $V = \{v_1, \ldots, v_n\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$.

Then $A = U^\top D U = U^{-\top} D U$

where $D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}$

and $U = Mtx_{V,W}(id)$ is unitary

The columns of U^\top (the rows of U) are the coordinates of v_1, \ldots, v_n, expressed in terms of the standard basis W. Given $x \in \mathbb{R}^n$, recall

$$x = \sum_{i=1}^{n} \gamma_i v_i \text{ where } \gamma_i = x \cdot v_i$$
Quadratic Forms

So

\[f(x) = f \left(\sum \gamma_i v_i \right) \]
\[= (\sum \gamma_i v_i)^T A \left(\sum \gamma_i v_i \right) \]
\[= (\sum \gamma_i v_i)^T U^T D U \left(\sum \gamma_i v_i \right) \]
\[= (U \sum \gamma_i v_i)^T D \left(U \sum \gamma_i v_i \right) \]
\[= \left(\sum \gamma_i U v_i \right)^T D \left(\sum \gamma_i U v_i \right) \]
\[= (\gamma_1, \ldots, \gamma_n) D \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix} \]
\[= \sum \lambda_i \gamma_i^2 \]

\[\{ \text{eigenvalues of } A \} \]

\[(EF)^T = F^T E^T \]
\[(U \text{ is change of basis from } W \text{ to } V) \]
\[\forall v \in U v_i = e_i = (0, \ldots, 1, 0, \ldots) \]
Quadratic Forms

The equation for a level set of f is

$$\forall \gamma \in \mathbb{R}^n : f(\gamma) = C^2 = \left\{ \gamma \in \mathbb{R}^n : \sum_{i=1}^{n} \lambda_i \gamma_i^2 = C \right\}$$

- If $\lambda_i \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \geq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C < 0$.

 \[\Rightarrow \text{f has global min at 0, } f(x) \geq 0 \ \forall x \]

- If $\lambda_i \leq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal

 \[\Rightarrow \text{f has global max at 0, } f(x) \leq 0 \ \forall x \]
axis along v_i is $\sqrt{C/\lambda_i}$ if $C \leq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C > 0$.

• If $\lambda_i > 0$ for some i and $\lambda_j < 0$ for some j, the level set is a hyperboloid. For example, suppose $n = 2$, $\lambda_1 > 0$, $\lambda_2 < 0$. The equation is

$$C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2$$

$$= \left(\sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2\right) \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2\right)$$

\Rightarrow if has a saddle point at 0

\min with respect to v_i

max with respect to v_j
This is a hyperbola with asymptotes

\[
0 = \sqrt{\lambda_1 \gamma_1} + \sqrt{|\lambda_2| \gamma_2}
\]

\[\Rightarrow \gamma_1 = -\sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2\]

\[
0 = \left(\sqrt{\lambda_1 \gamma_1} - \sqrt{|\lambda_2| \gamma_2}\right)
\]

\[\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2\]
$\lambda_1 > 0, \lambda_2 > 0$

f has a global min at 0
\[\gamma_1 > 0, \gamma_2 < 0 \]

\[\gamma_1 = \sqrt{|\lambda_2|/\lambda_1} \]

\[\gamma_2 = -\sqrt{|\lambda_2|/\lambda_1} \]

\[\exists \gamma \in \mathbb{R}^n : f(x) = 0 \]

\(f \) was a saddle point at 0
Quadratic Forms

This proves the following corollary of Theorem 2.

Corollary 1. Consider the quadratic form (1). Let \(\{v_1, \ldots, v_n\} \) be an orthonormal basis of eigenvectors of \(A \) with corresponding eigenvalues \(\{\lambda_1, \ldots, \lambda_n\} \).

1. \(f \) has a global minimum at 0 if and only if \(\lambda_i \geq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

2. \(f \) has a global maximum at 0 if and only if \(\lambda_i \leq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).
3. If $\lambda_i < 0$ for some i and $\lambda_j > 0$ for some j, then f has a saddle point at 0; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n.
Bounded Linear Maps

Definition 3. Suppose X, Y are normed vector spaces and $T \in L(X, Y)$. We say T is bounded if

$$\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\|_Y \leq \beta \|x\|_X \quad \forall x \in X$$

Note this implies that T is Lipschitz with constant β.

Why not previous notion of bounded:

$$\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\| \leq \beta \quad ?$$

$$T(\alpha x) = \alpha T(x) \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \quad \|T(\alpha x)\| = |\alpha| \|T(x)\| \quad \forall x \in \mathbb{R}$$
Bounded Linear Maps

Much more is true:

Theorem 3 (Thms. 4.1, 4.3). Let X and Y be normed vector spaces and $T \in L(X,Y)$. Then

- T is continuous at some point $x_0 \in X$ if and only if T is continuous at every $x \in X$.
- T is uniformly continuous on X if and only if T is Lipschitz.
- T is Lipschitz if and only if T is bounded.

Proof. Suppose T is continuous at x_0. Fix $\varepsilon > 0$. Then there exists $\delta > 0$ such that

$$
\|z - x_0\| < \delta \Rightarrow \|T(z) - T(x_0)\| < \varepsilon
$$
Now suppose x is any element of X. If $\|y - x\| < \delta$, let $z = y - x + x_0$, so $\|z - x_0\| = \|y - x\| < \delta$.

\[
\|T(y) - T(x)\| = \|T(y - x)\| < \delta
\]

Then

\[
\|T(y - x + x_0 - x_0)\| = \|T(z - x_0)\|
\]

which proves that T is continuous at every x, and uniformly continuous.

We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded. Then

\[
\exists \{x_n\} \text{ s.t. } \|T(x_n)\| > n\|x_n\| \quad \forall n
\]
Note that $x_n \neq 0$. Let $\varepsilon = 1$. Fix $\delta > 0$ and choose n such that $\frac{1}{n} < \delta$. Let

$$
\frac{x_n}{n\|x_n\|} = \frac{x_n}{n\|x_n\|} = \frac{1}{n} < \delta
$$

$$
\|x_n' - 0\| = \frac{1}{n\|x_n\|} \quad = \frac{1}{n\|x_n\|}
$$

$$
\|T(x_n') - T(0)\| = \frac{1}{n\|x_n\|} \|T(x_n)\| > \frac{n\|x_n\|}{n\|x_n\|} = 1 = \varepsilon
$$

$$
\left(\text{defn of } x_n' \right)
\left(+ \text{ linear } \right)
\left(\text{defn of } x_n \right)
$$
Since this is true for every δ, T is not continuous at 0. Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded, so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then

$$\|x - 0\| < \delta \Rightarrow \|x\| < \delta$$

$$\Rightarrow \|T(x) - T(0)\| = \|T(x)\| < M\delta$$

$$\Rightarrow \|T(x) - T(0)\| < \varepsilon = M\delta$$

so T is continuous at 0.

Thus, we have shown that continuity at some point x_0 implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0, which implies that T is bounded, which implies that T is continuous at 0, which implies that T is
continuous at some x_0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$
\| T(x) - T(y) \| = \| T(x - y) \| \leq M \| x - y \|
$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent. \qed

\[\forall x \in X: \ | T(x) - T(y) | = | T(x) | \leq M | x - y | \]
Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).

Theorem 4 (Thm. 4.5). Let X and Y be normed vector spaces, with $\dim X = n$. Every $T \in L(X, Y)$ is bounded.

Proof. See de la Fuente. \qed
Topological Isomorphism

Definition 4. A topological isomorphism between normed vector spaces X and Y is a linear transformation $T \in L(X, Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T : X \rightarrow Y$.
The Space \(B(X, Y) \)

Suppose \(X \) and \(Y \) are normed vector spaces. We define

\[
B(X, Y) = \{ T \in L(X, Y) : T \text{ is bounded} \}
\]

\[
\|T\|_{B(X, Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X}, x \in X, x \neq 0 \right\}
\]

\[
= \sup \{\|T(x)\|_Y : \|x\|_X = 1 \}
\]

\[\Rightarrow \quad \|T(x)\| = \|T(\|x\|x)\| \leq \beta \|x\| \quad \forall x \neq 0 \]

We skip the proofs of the rest of these results – read dIF.
The Space $B(X,Y)$

Theorem 5 (Thm. 4.8). Let X, Y be normed vector spaces. Then

$$\left(B(X,Y), \| \cdot \|_{B(X,Y)} \right)$$

is a normed vector space.
The Space $B(\mathbb{R}^n, \mathbb{R}^m)$

Theorem 6 (Thm. 4.9). Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ ($= B(\mathbb{R}^n, \mathbb{R}^m)$) with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max\{|a_{ij}| : 1 \leq i \leq m, 1 \leq j \leq n\}$$

Then

$$M \leq \|T\| \leq M\sqrt{mn}$$
Compositions

Theorem 7 (Thm. 4.10). Let $R \in L(\mathbb{R}^m, \mathbb{R}^n)$ and $S \in L(\mathbb{R}^n, \mathbb{R}^p)$. Then

$$\|S \circ R\| \leq \|S\| \|R\|$$
Invertibility

Define $\Omega(\mathbb{R}^n) = \{ T \in L(\mathbb{R}^n, \mathbb{R}^n) : T \text{ is invertible} \}$

Theorem 8 (Thm. 4.11'). Suppose $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and E is the standard basis of \mathbb{R}^n. Then

T is invertible

$\iff \ker T = \{0\}$
$\iff \det (\text{Mat}_E(T)) \neq 0$
$\iff \det (\text{Mat}_V(T)) \neq 0$ for every basis V
$\iff \det (\text{Mat}_{V,W}(T)) \neq 0$ for every pair of bases V, W
Invertibility

Theorem 9 (Thm. 4.12). If $S, T \in \Omega(\mathbb{R}^n)$, then $S \circ T \in \Omega(\mathbb{R}^n)$ and

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}$$
Invertibility

Theorem 10 (Thm. 4.14). Let \(S, T \in L(\mathbb{R}^n, \mathbb{R}^n) \). If \(T \) is invertible and
\[
\|T - S\| < \frac{1}{\|T^{-1}\|}
\]
then \(S \) is invertible. In particular, \(\Omega(\mathbb{R}^n) \) is open in \(L(\mathbb{R}^n, \mathbb{R}^n) = B(\mathbb{R}^n, \mathbb{R}^n) \).

Theorem 11 (Thm. 4.15). The function \((\cdot)^{-1} : \Omega(\mathbb{R}^n) \to \Omega(\mathbb{R}^n) \) that assigns \(T^{-1} \) to each \(T \in \Omega(\mathbb{R}^n) \) is continuous.