Econ 204 2017

Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \(\mathbb{R} \)
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem
Cardinality (cont.)

Theorem 1. The set of rational numbers Q is countable.

“Picture Proof”:

$$Q = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

$$= \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
Go back and forth on upward-sloping diagonals, omitting the
repeats:

\[f(1) = 0 \]
\[f(2) = 1 \]
\[f(3) = \frac{1}{2} \]
\[f(4) = -1 \]
\[\vdots \]

\[f : \mathbb{N} \to \mathbb{Q}, \text{ } f \text{ is one-to-one and onto.} \]
Notation: Given a set A, 2^A is the set of all subsets of A. This is the “power set” of A, also denoted $P(A)$.

Important example of an uncountable set:

Theorem 2 (Cantor). $2^\mathbb{N}$, the set of all subsets of \mathbb{N}, is not countable.

Proof. Suppose $2^\mathbb{N}$ is countable. Then there is a bijection $f : \mathbb{N} \to 2^\mathbb{N}$. Let $A_m = f(m)$. We create an infinite matrix, whose
\((m, n)^{th}\) entry is 1 if \(n \in A_m\), 0 otherwise:

\[
\begin{array}{cccccc}
 & 1 & 2 & 3 & 4 & 5 & \ldots \\
N & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_1 & \emptyset & 1 & 0 & 0 & 0 & \ldots \\
A_2 & \{1\} & 1 & 1 & 1 & 0 & \ldots \\
2^N A_3 & \{1, 2, 3\} & 1 & 1 & 1 & 1 & \ldots \\
A_4 & N & 1 & 1 & 1 & 1 & 1 \\
A_5 & 2N & 0 & 1 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ldots
\end{array}
\]

Now, on the main diagonal, change all the 0s to 1s and vice
versa:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 = \emptyset</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>A_2 = ${1}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2^N A_3 = ${1, 2, 3}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>A_4 = \mathbb{N}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>A_5 = 2^N</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Let

\[t_{mn} = \begin{cases}
 1 & \text{if } n \in A_m \\
 0 & \text{otherwise}
\end{cases} \]

Let \(A = \{m \in \mathbb{N} : t_{mm} = 0\} \).

\[
m \in A \iff t_{mm} = 0 \iff m \not\in A_m
\]
\[
1 \in A \iff 1 \not\in A_1 \text{ so } A \neq A_1
\]
\[
2 \in A \iff 2 \not\in A_2 \text{ so } A \neq A_2
\]
\[
\vdots
\]
\[
m \in A \iff m \not\in A_m \text{ so } A \neq A_m
\]

Therefore, \(A \neq f(m) \) for any \(m \), so \(f \) is not onto, contradiction. \(\square \)
Some Additional Facts About Cardinality

Recall we let \(|A|\) denote the cardinality of a set \(A\).

- if \(A\) is numerically equivalent to \(\{1,\ldots,n\}\) for some \(n \in \mathbb{N}\), then \(|A| = n\).

- \(A\) and \(B\) are numerically equivalent if and only if \(|A| = |B|\)

- if \(|A| = n\) and \(A\) is a proper subset of \(B\) (that is, \(A \subseteq B\) and \(A \neq B\)) then \(|A| < |B|\)
• if A is countable and B is uncountable, then

\[n < |A| < |B| \quad \forall n \in \mathbb{N} \]

• if $A \subseteq B$ then $|A| \leq |B|$

• if $r: A \rightarrow B$ is 1-1, then $|A| \leq |B|$

• if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable

• if $r: A \rightarrow B$ is 1-1 and B is countable, then A is at most countable
Algebraic Structures: Fields

Definition 1. A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. **Associativity of $+$:**
 \[\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \]

2. **Commutativity of $+$:**
 \[\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha \]

3. **Existence of additive identity:**
 \[\exists! 0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha \]

Note: There exists a unique additive identity for each element in the field.
4. Existence of additive inverse:

\[\forall \alpha \in F \ \exists! (\neg \alpha) \in F \text{ s.t. } \alpha + (\neg \alpha) = (\neg \alpha) + \alpha = 0 \]

Define \(\alpha - \beta = \alpha + (\neg \beta) \)

5. Associativity of \(\cdot \):

\[\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma) \]

6. Commutativity of \(\cdot \):

\[\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha \]

7. Existence of multiplicative identity:

\[\exists! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha \]
8. Existence of multiplicative inverse:

\[\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \exists ! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1 \]

Define \(\frac{\alpha}{\beta} = \alpha \beta^{-1} \). (\(\beta \neq 0 \))

9. Distributivity of multiplication over addition:

\[\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \]
Fields

Examples:

- **R**: standard +, ·

- **C**: \{x + iy : x, y ∈ R\}. \(i^2 = -1\), so

\[(x + iy)(w + iz) = xw + ixy + iwy + i^2yz = (xw - yz) + i(xz + wy)\]

- **Q**: Q ⊂ R, Q ≠ R. Q is closed under +, ·, taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on R, so Q is a field.
• \(\mathbb{N} \) is not a field: no additive identity.

• \(\mathbb{Z} \) is not a field; no multiplicative inverse for 2.

• \(\mathbb{Q}(\sqrt{2}) \), the smallest field containing \(\mathbb{Q} \cup \{\sqrt{2}\} \). Take \(\mathbb{Q} \), add \(\sqrt{2} \), and close up under \(+, \cdot \), taking additive and multiplicative inverses. One can show

\[
\mathbb{Q}(\sqrt{2}) = \{ q + r\sqrt{2} : q, r \in \mathbb{Q} \}
\]

For example,

\[
(q + r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}
\]
• A finite field: $F_2 = (\{0, 1\}, +, \cdot)$ where

\[
\begin{align*}
0 + 0 &= 0 & 0 \cdot 0 &= 0 \\
0 + 1 &= 1 + 0 &= 1 & 0 \cdot 1 &= 1 \cdot 0 &= 0 \\
1 + 1 &= 0 & 1 \cdot 1 &= 1
\end{align*}
\]

("Arithmetic mod 2")

\Rightarrow $1 = -1$
Vector Spaces

Definition 2. A vector space is a 4-tuple \((V, F, +, \cdot)\) where \(V\) is a set of elements, called vectors, \(F\) is a field, \(+\) is a binary operation on \(V\) called vector addition, and \(\cdot : F \times V \rightarrow V\) is called scalar multiplication, satisfying

1. **Associativity of +:**

 \[\forall x, y, z \in V, \ (x + y) + z = x + (y + z) \]

2. **Commutativity of +:**

 \[\forall x, y \in V, \ x + y = y + x \]
3. **Existence of vector additive identity:**

\[\exists ! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x \]

4. **Existence of vector additive inverse:**

\[\forall x \in V \ \exists ! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0 \]

Define \(x - y \) to be \(x + (-y) \).

5. **Distributivity of scalar multiplication over vector addition:**

\[\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \]

6. **Distributivity of scalar multiplication over scalar addition:**

\[\forall \alpha, \beta \in F, x \in V \ \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \]
7. Associativity of \cdot:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

8. Multiplicative identity:

$$\forall x \in V \quad 1 \cdot x = x$$

(Note that 1 is the multiplicative identity in F; $1 \notin V$)

"V is a vector space over $F"$ or "V over $F""
Vector Spaces

Examples:

1. \mathbb{R}^n over \mathbb{R}. (Standard $+$, \cdot)

2. \mathbb{R} is a vector space over \mathbb{Q}:
 (scalar multiplication) $q \cdot r = qr$ (product in \mathbb{R})
 \mathbb{R} is not finite-dimensional over \mathbb{Q}, i.e. \mathbb{R} is not \mathbb{Q}^n for any $n \in \mathbb{N}$.

3. \mathbb{R} is a vector space over \mathbb{R}.
4. \(\mathbb{Q}(\sqrt{2}) \) is a vector space over \(\mathbb{Q} \). As a vector space, it is \(\mathbb{Q}^2 \); as a field, you need to take the funny field multiplication.

i.e. \(\mathbb{Q} \) versus \(\mathbb{Q} + \sqrt{2} \)

5. \(\mathbb{Q}(\sqrt[3]{2}) \), as a vector space over \(\mathbb{Q} \), is \(\mathbb{Q}^3 \).

6. \((F_2)^n \) is a finite vector space over \(F_2 \).

7. \(C([0, 1]) \), the space of all continuous real-valued functions on \([0, 1]\), is a vector space over \(\mathbb{R} \).

- vector addition: \(f, g \in C([0, 1]) \)

\[
(f + g)(t) = f(t) + g(t) \quad \forall t \in [0, 1]
\]

define \(f + g \)
Note we define the function $f + g$ by specifying what value it takes for each $t \in [0, 1]$.

- scalar multiplication:
 \[(\alpha f)(t) = \alpha(f(t))\]

- vector additive identity: 0 is the function which is identically zero: $0(t) = 0$ for all $t \in [0, 1]$.

- vector additive inverse:
 \[(-f)(t) = -(f(t))\]
Axioms for \(\mathbb{R} \)

1. \(\mathbb{R} \) is a field with the usual operations \(+\), \(\cdot\), additive identity 0, and multiplicative identity 1.

2. **Order Axiom:** There is a complete ordering \(\leq \), i.e. \(\leq \) is reflexive, transitive, antisymmetric \((\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta)\) with the property that

\[
\forall \alpha, \beta \in \mathbb{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha
\]

The order is compatible with \(+\) and \(\cdot\), i.e.

\[
\forall \alpha, \beta, \gamma \in \mathbb{R} \begin{cases}
\alpha \leq \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma \\
\alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha \gamma \leq \beta \gamma
\end{cases}
\]

\(\alpha \geq \beta\) means \(\beta \leq \alpha\). \(\alpha < \beta\) means \(\alpha \leq \beta\) and \(\alpha \neq \beta\).
3. **Completeness Axiom:** Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$ satisfy

$$\ell \leq h \quad \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbb{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

The Completeness Axiom differentiates \mathbb{R} from \mathbb{Q}: \mathbb{Q} satisfies all the axioms for \mathbb{R} except the Completeness Axiom.
Sups, Infs, and the Supremum Property

Definition 3. Suppose $X \subseteq \mathbb{R}$. We say u is an upper bound for X if

$$x \leq u \ \forall x \in X$$

and ℓ is a lower bound for X if

$$\ell \leq x \ \forall x \in X$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.
Definition 4. Suppose X is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

$$\sup X \geq x \ \forall x \in X \text{ (sup } X \text{ is an upper bound)}$$

$$\forall y < \sup X \ \exists x \in X \text{ s.t. } x > y \text{ (there is no smaller upper bound)}$$

Analogously, suppose X is bounded below. The infimum of X, written $\inf X$, is the greatest lower bound for X, i.e. $\inf X$ satisfies

$$\inf X \leq x \ \forall x \in X \text{ (inf } X \text{ is a lower bound)}$$

$$\forall y > \inf X \ \exists x \in X \text{ s.t. } x < y \text{ (there is no greater lower bound)}$$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.
The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: \(\sup X \) need not be an element of \(X \). For example, \(\sup(0,1) = 1 \notin (0,1) \).
The Supremum Property

Theorem 3 (Theorem 6.8, plus . . .). *The Supremum Property and the Completeness Axiom are equivalent.*

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbb{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \leq u \ \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbb{R} \text{ s.t. } x \leq \alpha \leq u \ \forall x \in X, u \in U$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X.,
so sup \(X = \alpha \in \mathbb{R} \). The case in which \(X \) is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose \(L, H \subseteq \mathbb{R} \), \(L \neq \emptyset \neq H \), and

\[
\ell \leq h \ \forall \ell \in L, h \in H
\]

Since \(L \neq \emptyset \) and \(L \) is bounded above (by any element of \(H \)), \(\alpha = \sup L \) exists and is real. By the definition of supremum, \(\alpha \) is an upper bound for \(L \), so

\[
\ell \leq \alpha \ \forall \ell \in L
\]

Suppose \(h \in H \). Then \(h \) is an upper bound for \(L \), so by the definition of supremum, \(\alpha \leq h \). Therefore, we have shown that

\[
\ell \leq \alpha \leq h \ \forall \ell \in L, h \in H
\]

so the Completeness Axiom holds.
Archimedean Property

Theorem 4 (Archimedean Property, Theorem 6.10 + ...).

\[\forall x, y \in \mathbb{R}, y > 0 \ \exists n \in \mathbb{N} \ s.t. \ ny = (y + \cdots + y) > x \]

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \(\square\)
Intermediate Value Theorem

Theorem 5 (Intermediate Value Theorem). *Suppose* \(f : [a, b] \to \mathbb{R} \) *is continuous, and* \(f(a) < d < f(b) \). *Then there exists* \(c \in (a, b) \) *such that* \(f(c) = d \).

Proof. Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let
\[
B = \{ x \in [a, b] : f(x) < d \}
\]
a \in B, so \(B \neq \emptyset \); \(B \subseteq [a, b] \), so \(B \) is bounded above. By the Supremum Property, \(\sup B \) exists and is real so let \(c = \sup B \). Since \(a \in B \), \(c \geq a \). \(B \subseteq [a, b] \), so \(c \leq b \). Therefore, \(c \in [a, b] \).
$f(a) < d < f(b)$

$B = \{ x \in [a, b] : f(x) < d \}$

$c = \sup B$

Claim: $f(c) = d$
We claim that $f(c) = d$. If not, suppose $f(c) < d$. Then since $f(b) > d$, $c \neq b$, so $c < b$. Let $\varepsilon = \frac{d-f(c)}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) < f(c) + \varepsilon \implies f(c) + \frac{d-f(c)}{2}$$

$$= \frac{f(c) + d}{2} < \frac{d+d}{2} = d$$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.
\[f(c) < d \Rightarrow \exists \delta > 0 \text{ s.t. for } x \in (c-\delta, c+\delta), f(x) < d \]
\[\Rightarrow c \neq \sup B \]
Suppose $f(c) > d$. Then since $f(a) < d$, $a \neq c$, so $c > a$. Let

$$\varepsilon = \frac{f(c) - d}{2} > 0.$$

Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) > f(c) - \varepsilon$$

$$= \frac{f(c) - d}{2}$$

$$= \frac{f(c) + d}{2}$$

$$> \frac{d + d}{2}$$

$$= d$$

so $(c - \delta, c + \delta) \cap B = \emptyset$. So either there exists $x \in B$ with $x \geq c + \delta$ (in which case c is not an upper bound for B) or $c - \delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \neq \sup B$, contradiction.
\[
\text{If } f'(a) < 0 \Rightarrow \exists \delta > 0 \text{ s.t. } f(x) < p \forall x \in (c-\delta, c+\delta)
\]

\[
(c-\delta, c+\delta) \cap B = \emptyset \Rightarrow \text{ either } \forall y \in [c+\delta, b] \cap B \\
\text{or } \exists \gamma \in [a, c-\delta] \\
\text{in either case, } c \neq \sup B
\]
Since \(f(c) \not< d, \ f(c) \not> d, \) and the order is complete, \(f(c) = d. \) Since \(f(a) < d \) and \(f(b) > d, \ a \neq c \neq b, \) so \(c \in (a,b). \)
Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0, 2]$. f is continuous (Why?). $f(0) = 0 < 2$ and $f(2) = 4 > 2$, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that $f(c) = 2$, i.e. such that $c^2 = 2$. \qed