Econ 204 2017

Lecture 2

Outline

- 1. Cardinality (cont.)
- 2. Algebraic Structures: Fields and Vector Spaces
- 3. Axioms for R
- 4. Sup, Inf, and the Supremum Property
- 5. Intermediate Value Theorem

Cardinality (cont.)

Notation: Given a set A, 2^A is the set of all subsets of A. This is the "power set" of A, also denoted P(A).

Important example of an uncountable set:

Theorem 1 (Cantor). $2^{\mathbb{N}}$, the set of all subsets of \mathbb{N} , is not countable.

Proof. Suppose $2^{\mathbb{N}}$ is countable. Then there is a bijection $f: \mathbb{N} \to 2^{\mathbb{N}}$. Let $A_m = f(m)$. We create an infinite matrix, whose

 $(m,n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

			\mathbf{N}			
		1	2	3	4	5
	Ø	0	0	0	0	0
$A_2 =$	{1}	1	0	0	0	0
$2^{N} A_{3} =$	{1,2,3} N	1	1	1	0	0
$A_4 =$	${f N}$	1	1	1	1	1
$A_5 =$	2N	0 :	1 :	O :	1 :	0 ···

Now, on the main diagonal, change all the 0s to 1s and vice

versa:

			${f N}$			
		1	2	3	4	5
	Ø	1				0
$A_2 =$						0
	{1,2,3}	1				
$A_4 =$	${f N}$	1				1
$A_5 =$	2N	O :	1 :	O :	1 :	1 ···

Let

$$t_{mn} = \begin{cases} 1 & \text{if } n \in A_m \\ 0 & \text{if } n \notin A_m \end{cases}$$

Let $A = \{ m \in \mathbb{N} : t_{mm} = 0 \}.$

$$m \in A \Leftrightarrow t_{mm} = 0$$

 $\Leftrightarrow m \not\in A_m$
 $1 \in A \Leftrightarrow 1 \not\in A_1 \text{ so } A \neq A_1$
 $2 \in A \Leftrightarrow 2 \not\in A_2 \text{ so } A \neq A_2$
 \vdots
 $m \in A \Leftrightarrow m \not\in A_m \text{ so } A \neq A_m$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.

Some Additional Facts About Cardinality

Recall we let |A| denote the cardinality of a set A.

- if A is numerically equivalent to $\{1,\ldots,n\}$ for some $n\in \mathbb{N}$, then |A|=n.
- ullet A and B are numerically equivalent if and only if |A|=|B|
- if |A| = n and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then |A| < |B|

ullet if A is countable and B is uncountable, then

$$n < |A| < |B| \quad \forall n \in \mathbf{N}$$

- if $A \subseteq B$ then $|A| \le |B|$
- if $r: A \to B$ is 1-1, then $|A| \le |B|$
- ullet if B is countable and $A\subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable
- ullet if $r:A\to B$ is 1-1 and B is countable, then A is at most countable

Algebraic Structures: Fields

Definition 1. A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. Associativity of +:

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

2. Commutativity of +:

$$\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha$$

3. Existence of additive identity:

$$\exists ! 0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha$$

4. Existence of additive inverse:

$$\forall \alpha \in F \ \exists ! (-\alpha) \in F \ s.t. \ \alpha + (-\alpha) = (-\alpha) + \alpha = 0$$
 Define $\alpha - \beta = \alpha + (-\beta)$

5. Associativity of ·:

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

6. Commutativity of ·:

$$\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha$$

7. Existence of multiplicative identity:

$$\exists ! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha$$

8. Existence of multiplicative inverse:

$$\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \text{ } \exists ! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$$
 Define $\frac{\alpha}{\beta} = \alpha \beta^{-1}$.

9. Distributivity of multiplication over addition:

$$\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Fields

Examples:

• R

•
$$C = \{x + iy : x, y \in R\}$$
. $i^2 = -1$, so
$$(x+iy)(w+iz) = xw + ixz + iwy + i^2yz = (xw-yz) + i(xz+wy)$$

• Q: $Q \subset R$, $Q \neq R$. Q is closed under +, \cdot , taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on R, so Q is a field.

- N is not a field: no additive identity.
- Z is not a field; no multiplicative inverse for 2.
- $Q(\sqrt{2})$, the smallest field containing $Q \cup \{\sqrt{2}\}$. Take Q, add $\sqrt{2}$, and close up under +, \cdot , taking additive and multiplicative inverses. One can show

$$\mathbf{Q}(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbf{Q}\}\$$

For example,

$$(q+r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}$$

• A finite field: $F_2 = (\{0,1\},+,\cdot)$ where

$$0+0 = 0$$
 $0 \cdot 0 = 0$
 $0+1 = 1+0 = 1$ $0 \cdot 1 = 1$
 $1+1 = 0$ $1 \cdot 1 = 1$

("Arithmetic mod 2")

Vector Spaces

Definition 2. A vector space is a 4-tuple $(V, F, +, \cdot)$ where V is a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $\cdot: F \times V \to V$ is called scalar multiplication, satisfying

1. Associativity of +:

$$\forall x, y, z \in V, (x + y) + z = x + (y + z)$$

2. Commutativity of +:

$$\forall x, y \in V, \ x + y = y + x$$

3. Existence of vector additive identity:

$$\exists ! 0 \in V \text{ s.t. } \forall x \in V, x + 0 = 0 + x = x$$

4. Existence of vector additive inverse:

$$\forall x \in V \ \exists ! (-x) \in V \ s.t. \ x + (-x) = (-x) + x = 0$$
 Define $x - y$ to be $x + (-y)$.

5. Distributivity of scalar multiplication over vector addition:

$$\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

6. Distributivity of scalar multiplication over scalar addition:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$

7. Associativity of ·:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

8. Multiplicative identity:

$$\forall x \in V \quad 1 \cdot x = x$$

(Note that 1 is the multiplicative identity in F; $1 \notin V$)

Vector Spaces

Examples:

- 1. \mathbb{R}^n over \mathbb{R} .
- 2. \mathbf{R} is a vector space over \mathbf{Q} :

(scalar multiplication) $q \cdot r = qr$ (product in R)

 ${f R}$ is not finite-dimensional over ${f Q}$, i.e. ${f R}$ is not ${f Q}^n$ for any $n\in {f N}.$

3. \mathbf{R} is a vector space over \mathbf{R} .

4. $\mathbf{Q}(\sqrt{2})$ is a vector space over \mathbf{Q} . As a vector space, it is \mathbf{Q}^2 ; as a field, you need to take the funny field multiplication.

5. $\mathbb{Q}(\sqrt[3]{2})$, as a vector space over \mathbb{Q} , is \mathbb{Q}^3 .

6. $(F_2)^n$ is a *finite* vector space over F_2 .

- 7. C([0,1]), the space of all continuous real-valued functions on [0,1], is a vector space over \mathbf{R} .
 - vector addition:

$$(f+g)(t) = f(t) + g(t)$$

Note we define the function f+g by specifying what value it takes for each $t \in [0,1]$.

• scalar multiplication:

$$(\alpha f)(t) = \alpha(f(t))$$

- vector additive identity: 0 is the function which is identically zero: 0(t) = 0 for all $t \in [0, 1]$.
- vector additive inverse:

$$(-f)(t) = -(f(t))$$

Axioms for R

- 1. ${\bf R}$ is a field with the usual operations +, \cdot , additive identity 0, and multiplicative identity 1.
- 2. **Order Axiom:** There is a complete ordering \leq , i.e. \leq is reflexive, transitive, antisymmetric ($\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$) with the property that

$$\forall \alpha, \beta \in \mathbf{R}$$
 either $\alpha \leq \beta$ or $\beta \leq \alpha$

The order is compatible with + and \cdot , i.e.

$$\forall \alpha, \beta, \gamma \in \mathbf{R} \left\{ \begin{array}{ccc} \alpha \leq \beta & \Rightarrow & \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma & \Rightarrow & \alpha \gamma \leq \beta \gamma \end{array} \right.$$

 $\alpha \geq \beta$ means $\beta \leq \alpha$. $\alpha < \beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta$.

Completeness Axiom

3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

$$\ell \le h \quad \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbf{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

$$\begin{array}{ccc}
 & \alpha \\
 & \downarrow & H \\
 & ---- & & \cdot & (----)
\end{array}$$

The Completeness Axiom differentiates ${\bf R}$ from ${\bf Q}$: ${\bf Q}$ satisfies all the axioms for ${\bf R}$ except the Completeness Axiom.

Sups, Infs, and the Supremum Property

Definition 3. Suppose $X \subseteq \mathbf{R}$. We say u is an upper bound for X if

$$x \le u \ \forall x \in X$$

and ℓ is a lower bound for X if

$$\ell \le x \ \forall x \in X$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 4. Suppose X is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

$$\sup X \ge x \quad \forall x \in X \text{ (sup } X \text{ is an upper bound)}$$

 $\forall y < \sup X \ \exists x \in X \ s.t. \ x > y \ (there is no smaller upper bound)$

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound for X, i.e. inf X satisfies

$$\inf X \leq x \quad \forall x \in X \text{ (inf } X \text{ is a lower bound)}$$

 $\forall y > \inf X \exists x \in X \text{ s.t. } x < y \text{ (there is no greater lower bound)}$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.

The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: $\sup X$ need not be an element of X. For example, $\sup(0,1)=1\not\in(0,1)$.

The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbf{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \le u \ \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbf{R} \text{ s.t. } x \leq \alpha \leq u \quad \forall x \in X, u \in U$$

 α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X,

so $\sup X = \alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}$, $L \neq \emptyset \neq H$, and

$$\ell \le h \ \forall \ell \in L, h \in H$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$\ell < \alpha \ \forall \ell \in L$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$\ell \le \alpha \le h \ \forall \ell \in L, h \in H$$

so the Completeness Axiom holds.

Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

$$\forall x, y \in \mathbf{R}, y > 0 \ \exists n \in \mathbf{N} \ s.t. \ ny = (y + \dots + y) > x$$

$$n \ times$$

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \Box

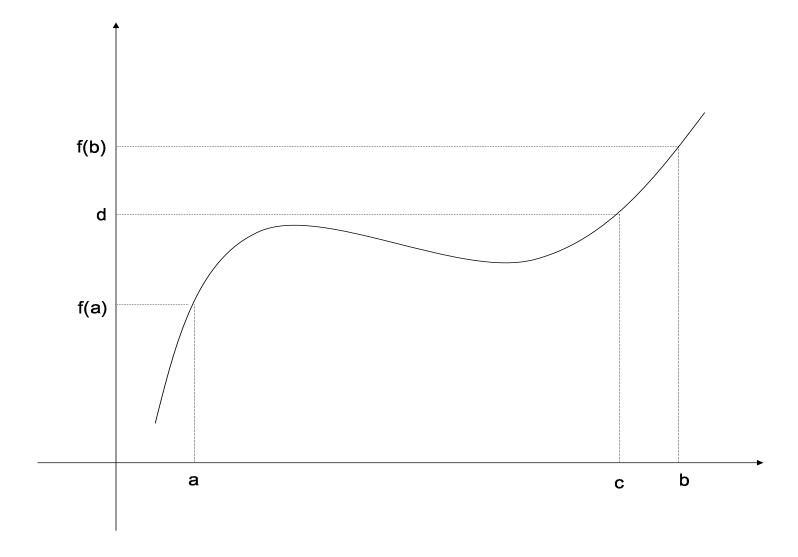
Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). Suppose $f : [a,b] \to \mathbb{R}$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a,b)$ such that f(c) = d.

Proof. Later, we will give a slick proof. Here, we give a barehands proof using the Supremum Property. Let

$$B = \{x \in [a, b] : f(x) < d\}$$

 $a \in B$, so $B \neq \emptyset$; $B \subseteq [a,b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a,b]$, so $c \leq b$. Therefore, $c \in [a,b]$.



We claim that f(c)=d. If not, suppose f(c)< d. Then since f(b)>d, $c\neq b$, so c< b. Let $\varepsilon=\frac{d-f(c)}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\Rightarrow f(x) < f(c) + \varepsilon$$

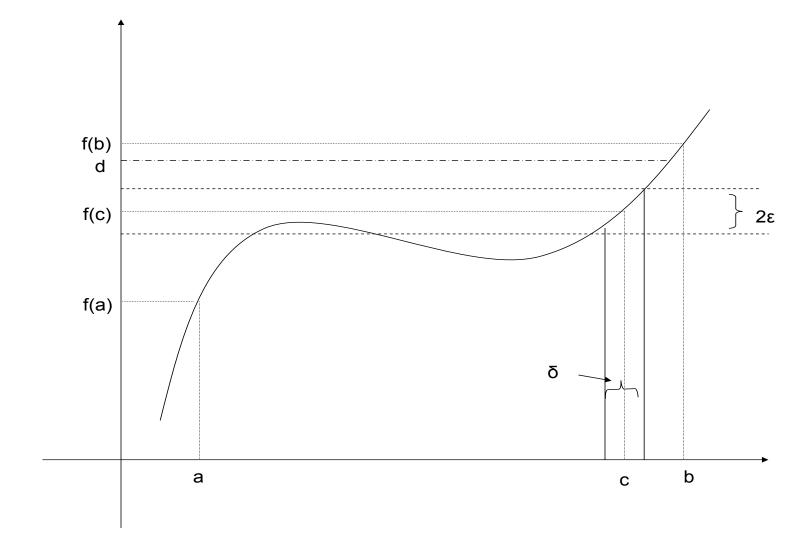
$$= f(c) + \frac{d - f(c)}{2}$$

$$= \frac{f(c) + d}{2}$$

$$< \frac{d + d}{2}$$

$$= d$$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.



Suppose f(c)>d. Then since f(a)< d, $a\neq c$, so c>a. Let $\varepsilon=\frac{f(c)-d}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\Rightarrow f(x) > f(c) - \varepsilon$$

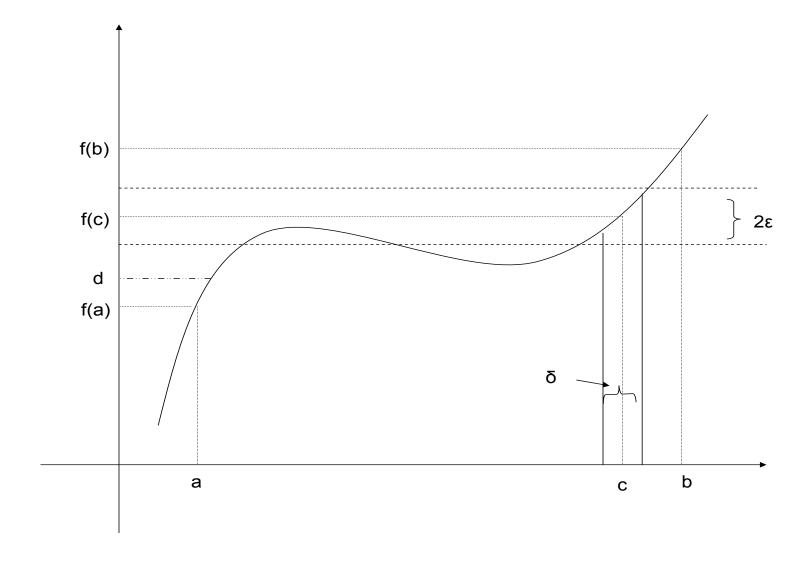
$$= f(c) - \frac{f(c) - d}{2}$$

$$= \frac{f(c) + d}{2}$$

$$> \frac{d + d}{2}$$

$$= d$$

so $(c-\delta,c+\delta)\cap B=\emptyset$. So either there exists $x\in B$ with $x\geq c+\delta$ (in which case c is not an upper bound for B) or $c-\delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c\neq \sup B$, contradiction.



Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, $a \neq c \neq b$, so $c \in (a,b)$. **Corollary 1.** There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0,2]$. f is continuous (Why?). f(0) = 0 < 2 and f(2) = 4 > 2, so by the Intermediate Value Theorem, there exists $c \in (0,2)$ such that f(c) = 2, i.e. such that $c^2 = 2$.