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Lecture 8
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Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear
combination of xz1,...,xzn € X IS a vector of the form

n
y= > oz; Wwhere ay,...,an € F

i=1
a; IS the coefficient of x; in the linear combination.

If' V C X, the span of V, denoted spanV, is the set of all linear
combinations of elements of V.

A set V C X spans X if spanV = X.



Linear Dependence and Independence

Definition 2. A set V C X is linearly dependent if there exist

v1,...,op €V and ay,...,an € F not all zero such that
) .
Z Ozi?}i:O
i=1

A setV C X jslinearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

n
Zaivizo, v, €V Vi=0a; =0 W1
=1



Bases

Definition 3. A Hamel basis (often just called a basis) of a vector
space X is a linearly independent set of vectors in X that spans
X.

Example: {(1,0),(0,1)} is a basis for R? (this is the standard
basis). v pe v

w (us) ®+ plo )y = e, 3D



Example, cont: {(1,1),(—1,1)} is another basis for R?:

Suppose (x,y) a(l,1)+ 38(—1,1) for some o, 3 € R

r = O{—ﬁ ey Ccﬁ-__«SEJ QL_%(SB
y = a+p
r+y = 2«
= o = Tty
2
y—x = 20
_ y—- ¢
=0 = _2|_
— Ty I L_

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans
R2. If (z,y) = (0,0),



so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-

dependent. Since it is linearly independent and spans RQ, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it
does not span R3. ey, (%~ 2) o™ 220wk o Spo
Example: {(1,0),(0,1),(1,1)} is not a basis for R2.

SO the set is not linearly independent.



Bases

Theorem 1 (Thm. 1.2"). Let V be a Hamel basis for X. Then
every vector x € X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients
nonzero).*

Proof. Let x € X. Since V spans X, we can write

where S1 is finite, as € F', as # 0, and vs € V for each s € 57.
Now, suppose

L — Z AsVs — Z Bsvs

s€ES sESH

“The unique representation of 0 is 0 = ) ., a;b;.

—_ = —_— o~



where S5 is finite, Bs € F', Bs # 0, and vs € V for each s € S5.
Let S = 57 USo, and define

as =0 for se& Sy\ Sy
Bs =0 for se&S1\ 5

Then
O = z—=x

= Z AsVs — Z Bsvs
s€ES sESH

— Z AsVs — Z Bsvs
SES SES

— Z (as — Bs)vs
seS

Since V is linearly independent, we must have as — 8s = 0, sO
as = O, for all s € S.

seES1asFF0&5 080 s€ 55



SO S1 = 55 and as = (s for s € S = S5, so the representation is
unique. [ ]



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice. [ ]



A closely related result, from which you can derive the previous
result, shows that any linearly independent set V in a vector
space X can be extended to a basis of X.

Theorem 3. If X is a vector space andV C X is linearly indepen-

dent, then there exists a linearly independent set W C X such
that

VCCWCspanW =X

?7(1\05\ (O\Q\
\g:';{Q Lkogo\)(o‘l’\ﬂs ) V- \WS
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NI RO Y B A



Bases

Theorem 4. Any two Hamel bases of a vector space X have the
same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {v), : A € A} and
W = {wy : v € '} are Hamel bases of X. Remove one vector
Vg from V, so that it no longer spans (if it did still span, then
vy, Would be a linear combination of other elements of V', and
V' would not be linearly independent). If wy € span(V \ {vy,})
for every v € I', then since W spans, V \ {v,,} would also span,
contradiction. Thus, we can choose g € I' such that

W~y € SPan <V \ {”/\o})



o X R K
X

W
Because w,, € spanV, we can write

mn
Wrg = Y 0Gvy,
1=0

where aq, the coefficient of Vg is not zero (if it were, then we

would have wy, € span <V \ {U)\O})). Since ag #= 0, we can solve
for vy, as a linear combination of wy, and vy,,...,vy,, SO

span ((V\{vag}) Ufwye}) >
2 spanV = <;(>o-f\((\l\’1\J,\31>U1"Ag0
= X

SO
((V\ {ag}) U{wro})
spans X. From the fact that w,, € span <V\{U>\O}) one can



show that

((V\ {vag}) U{wyo})
is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V with an element of W (when
V is uncountable, this is done by a process called transfinite
induction). At the end, we obtain a bijection from V to W, so
that V and W are numerically equivalent. [ ]



Dimension

Definition 4. The dimension of a vector space X, denoted dim X,
is the cardinality of any basis of X.

For V C X, |V| denotes the cardinality of the set V.

Q e W
for ssom n )

s T'& AJ«N'\ %: N
W e ghnentiensl

% " mhlxﬂ_dﬁimqr\%\\o@ ,

O)(\J\Q._r \J\J\&Q\
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Dimension

Example: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

{Eijilgigm,lgjgn} Tl wakn e

where
KQ if k=2and £ =

B Ub {O otherwise.

The dimension of the vector space of m X n matrices is mn.

)

. \ -~ A B
Ex= 0 [o- -6 - o
\ —_— \ - N
) . - 3 ‘. - .
N \
A - _ —_— -~ b
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Dimension and Dependence

Theorem 5 (Thm. 1.4). SupposedimX =n e N. IfV C X and
V| >n, then V is linearly dependent.

i e
Y wet N s Wnesry w\&%&@ﬁ | Se N con

o kended Yo o leass W& KN o
W e c\NN £\

—

\C
C oo Al g o a\/‘jwﬁ
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Dimension and Dependence

Theorem 6 (Thm. 1.5"). Suppose dimX =ne N, V C X, and
V| =n.

e ITV is linearly independent, then V spans X, soV is a Hamel
basis.

e ITV spans X, then V is linearly independent, soV is a Hamel

basis. ,
D) Mo G | ogre~d N A ol e W) wade N ;\Q)
>° SEUNRIA A
Condachs SAnien - 3 Cﬁ\J R eSS %r X) ;"‘&

) Ofmerwt ST, oo
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Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field
F. WesayT : X — Y is a linear transformation if

T(a1x1 + asxo) = T (x1) + axT(z2) Vi, z0 € X,a1,0p € F

\/\/\—/— . _ _
we %K \_:b\\,:i%) TN,y =TS
AN

Let L(X,Y) denote the set of all linear transformations from X
to Y.

Ao\ =ar U\Dé\—:\ﬂﬁi
VO e = Vo y The %\’L‘\) Yok >L

,chsu(} F} —-‘Qrzxeﬁ

Qe
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Linear Transformations

Theorem 7. L(X,Y) is a vector space over F'.

Proof. First, define linear combinations in L(X,Y) as follows.
For T1,1T> € L(X,Y) and «,3 € F, define oIy + 815 by

(T + B12)(z) = oT1(z) + BT2(x)
We need to show that aT7 4+ 871> € L(X,Y).

(aTy + BT%)(yx1 + 672)

__ 1(vx1 —|— dxo ) + ﬁumk—l— &EL’_; (delonDon)
= a(yT1(21) + 0T1 (22)) + B (VTo(z1) + 6T5(25)) TN )
= vy (aT1(z1) + BT2(z1)) + 0 (aT1(z2) + FT2(x2))  (cataried

v (aT1 + BT2) (z1) + 6 (o171 + B1%) (22) (Seimo
QQ*N
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so o1y + B1» € L(X,Y).

The rest of the proof involves straightforward checking of the
vector space axioms. [ ]



Compositions of Linear Transformations

Given R € L(X,Y) and S € L(Y,Z), SoR : X — Z. We will
show that SoR € L(X,Z), that is, the composition of two linear
transformations is linear.

(SoR)(axy + Bxo) S(R(ax1 + Bzo)) (defn * SR
= S(aR(z1) + BR(z2)) (& \p o)
= aS(R(z1)) + BS(R(z2)) (s Freat)

a(SoR)(z1) + B(SoR)(x2) (scdm o &)

so SoRe L(X,Z).

16



Kernel and Rank
Definition 6. Let T € L(X,Y).

e Theimage of T isImT =T(X) E\f

- eyl HI_,W\_T . o \lclcéfbf S i?m & \\

e The kernel of T is kerT = {z € X : T(z) = 0} (oo spoee & V)

e Therank of T is RankT = dim(ImT)

" MQ_':::\T%J—
Qacash i TR K L o wecier spaes WS s>
ﬁ\o\jwe\é\.&) i ’:\a\g},& )
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Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T € L(X,Y ). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dim X = dimkerT + RankT
\—/'\f__/ _
ANWVIEN A
Quaxdas ¢ Quew TN Xer U aic NIl SW‘DS\F%::S
* o &-\‘\ ) """3\\%’\1 o \’3‘5—(‘:\5‘ = weo
° Q'J\’L‘A(Q'W‘é\ -)(Q i.\x\)‘*‘)\‘t\ \h)l)_,.\\.br.\ C— \"DC-—S\&S‘-Q(-)L

L. g\ U0 i_'\JLub\\) —_— -

)

_-\—K,\_x)‘;-\z é: \\ 1& o \ch-_ir\g
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Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

Proof. Suppose T is one-to-one. Suppose = € kerT'. Then

T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.

Since T is one-to-one, x =0, so kerT = {0}. ( T Crear = >
T (oo ©€ er 1

Conversely, suppose that kerT = {0}. Suppose T(x1) = T(z2).

Then

T(x1 — x2) T(x1) — T (x2)

O

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

19



Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that

x VreX %‘:*\*:Céx
y Vyey Te = <&

S(T(x))
T(S(y))

Denote S by T 1,

Note that T is invertible if and only if it is one-to-one and onto.
This is just the condition for the existence of an inverse function.

The linearity of the inverse follows from the linearity of T'. =
(e Wi\ s —‘\(\N\g\ )

20



Invertible Linear Transformations

Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

T = v T 1) = o
T(w) = w T Hw) = o
Then J >
Tl av+fw) = T7H(aT@W)+BT@W))  Cackoiion
= 71 <T(ow/ + 510/)) (v Caesc)
= av' + pu’ (8efn® 7D

o~ (w) + BT~ H(w) (AeSa & N, 00D
21



so 71
e L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two vector spaces
over the same field F, and let V. = {vy : A € A} be a basis

for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V, that is:

1. Given any set {yy : A€ N} CY,dT € L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22



Proof. 1. If x € X, x has a unique representation of the form

n
L = Zaﬂ))\i 057;#07;:1,...,72,

i=1
(Recall that if £ = 0, then n = 0.) Define
n T (WAL (
< o VN O=wv
S > )
Then T'(z) € Y. The verification that T is linear is left as an

exercise.

23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

so S="1T.

S(x)

S ( zn: Oéz'UAZ-)

i ;S (U)\Z.) (S wreer)
=1

i o; T (vAi) L% o~d 1 ogiee

8~ i\j}‘- A& /\:})

1
n

=

.



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and
onto).

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If
\\

— \%\ 25



y €Y, then there exists x € X such that

C—T\-— ’\,S o "\_\_ DS

y = T(x)
n
— T ZO&)\Z.U)\Z
=1
n - )
= S ey (u) e
=1
n
— N VN (defn & Nx )
=1

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

— f: BT (un,) CdeSn o V)

1
m
= T Z Biu, (— Ui~eac)
{

Since T is one-to-one, kerT = {0}, so

m

> Biuy, =

i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-
early independent. Thus, V is a basis of Y since U and V are
numerically equivalent, dimX = dimY.

L “

Lo\l J L



<= ' Now suppose dimX =dimY. Let
U=A{uy: AXeA}and V ={vy,: A €N}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

1

P (el Y C—S—'\“"\"-‘(



T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

L S Vi 0O = T(gj)
n
= T(Z oziuA>
=1

(Vv K~ Cavr )

I I
YERINGE
£ £
S ~N
A VRS

g
pd
N—

=1
= o =---=ap=0 since V is a basis
= =0 = ,Z*Q‘LXL
v=D
= kerT = {0}
= T Is one-to-one



»—r" LS QN—\VD \

S o™
IfyeY, write y = 2?7’:1 ﬁﬂ))\i. Let
m
r= ) [uy
i=1
Then

T(zx) = T (Z @;UAZ-)
= Z BT (uy,) (T oo
= 2o

— Y

so T is onto, so T is an isomorphism and X,Y are isomorphic. [



