Econ 204 – Problem Set 1

Due Friday July 21, 2017

- 1. Use induction to prove the following:
 - (a) $2^{2n} 1$ is divisible by 3 for all $n \in \mathbb{N}$.
 - (b) $1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$
- 2. In the following examples, show that the sets A and B are numerically equivalent by finding a specific bijection between the two.
 - (a) A = [0, 1], B = [10, 20]
 - (b) A = [0, 1], B = [0, 1)
 - (c) $A = (-1, 1), B = \mathbb{R}$
- 3. Define the infinite **cartesian product** of a set X with itself as $X^{\omega} := \prod_{i \in \mathbb{N}} X$. Prove by contradiction that for $X = \{0, 1\}$, X^{ω} is uncountable. (Hint: suppose there exists a surjective map $f : \mathbb{N} \to X^{\omega}$, and find an element in X^{ω} which is not in the image of f).
- 4. (Dynkins's π - λ system Theorem): The goal of this exercise is to prove this theorem, and review/practice some of the set theoretical results.

Suppose Ω is some arbitrary set (which need not have any topological or algebraic structure). Then, $\mathscr{F} \subset 2^{\Omega}$ as a collection of subsets of Ω is called a σ -algebra if it satisfies following properties:

- $\emptyset \in \mathscr{F}$.
- For every $A \subset \Omega$ where $A \in \mathscr{F}$, $A^c \in \mathscr{F}$ (A^c refers to the complement of set A, i.e $\Omega \setminus A$).
- For every *countable* sequence of subsets $\{A_n\}$ where $A_n \in \mathscr{F}$ for all $n, \bigcup_n A_n \in \mathscr{F}$.
- (a) Show that $\Omega \in \mathscr{F}$.
- (b) Prove that \mathscr{F} is closed under countable intersection.

Two more definitions: first, $\Lambda \subset 2^{\Omega}$ is called a λ -system if:

- $\Omega \in \Lambda$.
- If $A, B \in \Lambda$ and $A \subset B$, then $B \setminus A \in \Lambda$.
- If $\{A_n\}$ is an increasing sequence of subsets, i.e $A_1 \subset A_2 \subset \ldots$, with each element being in Λ , then $\bigcup_n A_n \in \Lambda$.

Second, $\Pi \subset 2^{\Omega}$ is called a π -system, if it is closed under *finite* intersection. Now assume Π is a π -system such that $\Pi \subset \Lambda$, where Λ is a λ -system. The Dynkin's theorem which we want to prove states that the smallest σ -algebra containing Π (denoted by $\sigma(\Pi)$) is a subset of Λ . Try to keep on with each step below until the final result drops out:

- (c) Let $\lambda(\Pi)$ be the *smallest*¹ λ -system containing Π . Explain why $\lambda(\Pi) \subset \Lambda$. (Hint: note that $\Pi \subset \Lambda$).
- (d) Let $B \in \Pi$ and define $\mathcal{A}_B := \{A \subset \Omega : A \cap B \in \lambda(\Pi)\}$. Show that \mathcal{A}_B is itself a λ -system and contains $\lambda(\Pi)$, i.e $\lambda(\Pi) \subset \mathcal{A}_B$.
- (e) Now let $A \in \lambda(\Pi)$, and define $\mathcal{B}_A := \{B \subset \Omega : A \cap B \in \lambda(\Pi)\}$. Again, show that \mathcal{B}_A is a λ -system containing $\lambda(\Pi)$.
- (f) Use the previous two steps to show $\lambda(\Pi)$ is also a π -system.
- (g) Given that we have seen so far that $\lambda(\Pi)$ is both a π -system and a λ -system, deduce that it has to be a σ -algebra.
- (h) Conclude that $\sigma(\Pi) \subset \Lambda$.
- 5. Let S be some arbitrary space, and $f, g: S \to \mathbb{R}$ be real-valued functions defined on S, such that $|f(s)| \leq M_1$ and $|g(s)| \leq M_2$ for all $s \in S$. Answer the following items:
 - (a) For the case where $S = \left\{\frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$ and $f(x) = e^x$ show that f(S) is bounded from above and below. Then, find its supremum and infimum. Are they equal to the maximum and minimum of f on S?
 - (b) Back to the general setup, show that:

$$\sup_{s \in S} \{-f(s)\} = -\inf_{s \in S} \{f(s)\}$$
(1)

(c) Again for the general case, prove that:

$$\sup_{s \in S} \left(f(s) + g(s) \right) \le \sup_{s \in S} f(s) + \sup_{s \in S} g(s)$$
(2)

(d) Now suppose $S = U \times V$, i.e cartesian product of U and V. Prove the following inequality:

$$\inf_{u \in U} \sup_{v \in V} f(u, v) \ge \sup_{v \in V} \inf_{u \in U} f(u, v)$$
(3)

- 6. Suppose a function $f : \mathbb{R}_+ \to \mathbb{R}_+$ has the following properties for all x, y:
 - $f(x) = 0 \iff x = 0$
 - $x \ge y \implies f(x) \ge f(y)$
 - $f(x+y) \le f(x) + f(y)$

Show that if (X, d) is a metric space, then $(X, f \circ d)$ is also a metric space.

¹By smallest we mean: $\lambda(\Pi) = \bigcap_{\{\Lambda_{\alpha} \text{ is } \lambda \text{-system in } 2^{\Omega}: \Pi \subset \Lambda_{\alpha}\}} \Lambda_{\alpha}$