Econ 204 - Problem Set 1

1. Use induction to prove the following:
(a) $2^{2 n}-1$ is divisible by 3 for all $n \in \mathbb{N}$.
(b) $1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}$
2. In the following examples, show that the sets A and B are numerically equivalent by finding a specific bijection between the two.
(a) $A=[0,1], B=[10,20]$
(b) $A=[0,1], B=[0,1)$
(c) $A=(-1,1), B=\mathbb{R}$
3. Define the infinite cartesian product of a set X with itself as $X^{\omega}:=\prod_{i \in \mathbb{N}} X$. Prove by contradiction that for $X=\{0,1\}, X^{\omega}$ is uncountable. (Hint: suppose there exists a surjective map $f: \mathbb{N} \rightarrow X^{\omega}$, and find an element in X^{ω} which is not in the image of $f)$.
4. (Dynkins's $\pi-\lambda$ system Theorem): The goal of this exercise is to prove this theorem, and review/practice some of the set theoretical results.

Suppose Ω is some arbitrary set (which need not have any topological or algebraic structure). Then, $\mathscr{F} \subset 2^{\Omega}$ as a collection of subsets of Ω is called a σ-algebra if it satisfies following properties:

- $\emptyset \in \mathscr{F}$.
- For every $A \subset \Omega$ where $A \in \mathscr{F}, A^{c} \in \mathscr{F}\left(A^{c}\right.$ refers to the complement of set A, i.e $\Omega \backslash A$).
- For every countable sequence of subsets $\left\{A_{n}\right\}$ where $A_{n} \in \mathscr{F}$ for all $n, \bigcup_{n} A_{n} \in$ \mathscr{F}.
(a) Show that $\Omega \in \mathscr{F}$.
(b) Prove that \mathscr{F} is closed under countable intersection.

Two more definitions: first, $\Lambda \subset 2^{\Omega}$ is called a λ-system if:

- $\Omega \in \Lambda$.
- If $A, B \in \Lambda$ and $A \subset B$, then $B \backslash A \in \Lambda$.
- If $\left\{A_{n}\right\}$ is an increasing sequence of subsets, i.e $A_{1} \subset A_{2} \subset \ldots$, with each element being in Λ, then $\bigcup_{n} A_{n} \in \Lambda$.

Second, $\Pi \subset 2^{\Omega}$ is called a π-system, if it is closed under finite intersection. Now assume Π is a π-system such that $\Pi \subset \Lambda$, where Λ is a λ-system. The Dynkin's theorem which we want to prove states that the smallest σ-algebra containing Π (denoted by $\sigma(\Pi)$) is a subset of Λ. Try to keep on with each step below until the final result drops out:
(c) Let $\lambda(\Pi)$ be the smallest ${ }^{1} \lambda$-system containing Π. Explain why $\lambda(\Pi) \subset \Lambda$. (Hint: note that $\Pi \subset \Lambda$).
(d) Let $B \in \Pi$ and define $\mathcal{A}_{B}:=\{A \subset \Omega: A \cap B \in \lambda(\Pi)\}$. Show that \mathcal{A}_{B} is itself a λ-system and contains $\lambda(\Pi)$, i.e $\lambda(\Pi) \subset \mathcal{A}_{B}$.
(e) Now let $A \in \lambda(\Pi)$, and define $\mathcal{B}_{A}:=\{B \subset \Omega: A \cap B \in \lambda(\Pi)\}$. Again, show that \mathcal{B}_{A} is a λ-system containing $\lambda(\Pi)$.
(f) Use the previous two steps to show $\lambda(\Pi)$ is also a π-system.
(g) Given that we have seen so far that $\lambda(\Pi)$ is both a π-system and a λ-system, deduce that it has to be a σ-algebra.
(h) Conclude that $\sigma(\Pi) \subset \Lambda$.
5. Let S be some arbitrary space, and $f, g: S \rightarrow \mathbb{R}$ be real-valued functions defined on S, such that $|f(s)| \leq M_{1}$ and $|g(s)| \leq M_{2}$ for all $s \in S$. Answer the following items:
(a) For the case where $S=\left\{\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ and $f(x)=e^{x}$ show that $f(S)$ is bounded from above and below. Then, find its supremum and infimum. Are they equal to the maximum and minimum of f on S ?
(b) Back to the general setup, show that:

$$
\begin{equation*}
\sup _{s \in S}\{-f(s)\}=-\inf _{s \in S}\{f(s)\} \tag{1}
\end{equation*}
$$

(c) Again for the general case, prove that:

$$
\begin{equation*}
\sup _{s \in S}(f(s)+g(s)) \leq \sup _{s \in S} f(s)+\sup _{s \in S} g(s) \tag{2}
\end{equation*}
$$

(d) Now suppose $S=U \times V$, i.e cartesian product of U and V. Prove the following inequality:

$$
\begin{equation*}
\inf _{u \in U} \sup _{v \in V} f(u, v) \geq \sup _{v \in V} \inf _{u \in U} f(u, v) \tag{3}
\end{equation*}
$$

6. Suppose a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$has the following properties for all x, y :

- $f(x)=0 \Longleftrightarrow x=0$
- $x \geq y \Longrightarrow f(x) \geq f(y)$
- $f(x+y) \leq f(x)+f(y)$

Show that if (X, d) is a metric space, then $(X, f \circ d)$ is also a metric space.

[^0]
[^0]: ${ }^{1}$ By smallest we mean: $\lambda(\Pi)=\bigcap_{\left\{\Lambda_{\alpha} \text { is } \lambda \text {-system in } 2^{\left.\Omega: \Pi \subset \Lambda_{\alpha}\right\}}\right.} \Lambda_{\alpha}$

