Econ 204 – Problem Set 3

Due Friday July 28, 2017¹

- 1. Let (X, d) be a metric space:
 - (a) Let $y \in X$ be given. Define the function $d_y : X \to \mathbb{R}$ by

$$d_y(x) = d(x, y) \tag{1}$$

Show that d_y is a continuous function on X for each $y \in X$.

(b) Let A be a subset of X and $x \in X$. Recall that the distance from the point x to the set A is defined as:

$$\rho(x,A) = \inf \left\{ d(x,a) : a \in A \right\}$$
(2)

Show that the closure of set A is the set of all points with zero distance to A, that is:

$$\bar{A} = \left\{ x \in X : \rho(x, A) = 0 \right\}$$
(3)

- (c) Now let $A \subset X$ be a compact subset. Show that $\rho(x, A) = d(x, a)$ for some $a \in A$.
- 2. Let x and y be moving objects in \mathbb{R} . Time is discrete, namely $t \in \mathbb{Z}_+ := \{0\} \cup \mathbb{N}$. In addition, $\beta > 1$ is a fixed parameter. For $a, b \in \mathbb{R}$, let $\rho(a, b) := |a - b| \wedge 1$ (as mentioned in the section, the symbol \wedge is sometimes used to refer to the minimum of two elements). Then for any $x, y \in \mathbb{R}^{\omega^2}$, let

$$d(x,y) = \sum_{t \in \mathbb{Z}_+} \beta^{-t} \rho(x_t, y_t)$$
(4)

denotes the distance between $x = (x_0, x_1, ...)$ and $y = (y_0, y_1, ...)$, where x_t is the position of x at time t on the real line.

- (a) Show that d is a metric on \mathbb{R}^{ω} .
- (b) Show that (\mathbb{R}^{ω}, d) is a bounded metric space.
- (c) Is $[0,1]^{\omega}$ an open or closed subset of \mathbb{R}^{ω} ? (in either case present a proof)
- (d) Is (\mathbb{R}^{ω}, d) a complete metric space? (prove if yes, otherwise provide a counterexample)
- (e) Is $[0,1]^{\omega}$ a totally bounded subset under d? Is it a compact subset?
- 3. Let X be a connected space. Let \mathcal{R} be an equivalence relation on X such that for each $x \in X$, there exists an open set \mathcal{O}_x containing x such that $\mathcal{O}_x \subset [x]$. Show that \mathcal{R} has only one (distinct) equivalence class.

¹Please keep your answers short and concise. The solution to each question could well fit in at most one page.

²For the definition of \mathbb{R}^{ω} please refer to Q3 of ps.1

4. Define the correspondence $\Gamma : [0,1] \to 2^{[0,1]}$ by:

$$\Gamma(x) = \begin{cases} [0,1] \cap \mathbb{Q} & \text{if } x \in [0,1] \setminus \mathbb{Q} \\ [0,1] \setminus \mathbb{Q} & \text{if } x \in [0,1] \cap \mathbb{Q} \end{cases}.$$
(5)

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?

5. Let $f : \mathbb{R}_+ \to \mathbb{R}$. Recall that the left-hand limit of f at $t \in \mathbb{R}_+ \setminus \{0\}$ (if it exists) is

$$f(t^{-}) = \lim_{s \to t^{-}} f(s)$$

= $\lim_{s_n \to t} f(s_n)$ for any sequence $s_n \to t$ such that $s_n < t \ \forall n.$ (6)

- (a) Give an example of a function $f : \mathbb{R}_+ \to \mathbb{R}$ that is not continuous but has a finite left-hand limit at some point s > 0 (that is, such that $f(s^-)$ exists and $f(s^-) < \infty$).
- (b) Suppose $f(t^{-})$ exists and is finite for all t > 0. Let $f^{-} : \mathbb{R}_{+} \setminus \{0\} \to \mathbb{R}$ be given by $f^{-}(t) = f(t^{-})$. Show that f^{-} is left-continuous at each t > 0. Namely, show that if t > 0 and $\{s_n\}$ is a sequence such that $s_n < t \forall n$ and $s_n \to t$, then

$$\lim_{n \to \infty} f^{-}(s_n) = f^{-}(t) = f(t^{-}).$$
(7)

Hint: When $f(t^{-})$ exists and is finite, it is equivalently characterized as follows:

$$f(t^{-}) = \sup_{s < t} \inf \left\{ f(v) : s \le v < t \right\} = \inf_{s < t} \sup \left\{ f(v) : s \le v < t \right\}$$
(8)