Econ 204 - Problem Set 3

Due Friday July 28, $2017{ }^{1}$

1. Let (X, d) be a metric space:
(a) Let $y \in X$ be given. Define the function $d_{y}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
d_{y}(x)=d(x, y) \tag{1}
\end{equation*}
$$

Show that d_{y} is a continuous function on X for each $y \in X$.
(b) Let A be a subset of X and $x \in X$. Recall that the distance from the point x to the set A is defined as:

$$
\begin{equation*}
\rho(x, A)=\inf \{d(x, a): a \in A\} \tag{2}
\end{equation*}
$$

Show that the closure of set A is the set of all points with zero distance to A, that is:

$$
\begin{equation*}
\bar{A}=\{x \in X: \rho(x, A)=0\} \tag{3}
\end{equation*}
$$

(c) Now let $A \subset X$ be a compact subset. Show that $\rho(x, A)=d(x, a)$ for some $a \in A$.
2. Let x and y be moving objects in \mathbb{R}. Time is discrete, namely $t \in \mathbb{Z}_{+}:=\{0\} \cup \mathbb{N}$. In addition, $\beta>1$ is a fixed parameter. For $a, b \in \mathbb{R}$, let $\rho(a, b):=|a-b| \wedge 1$ (as mentioned in the section, the symbol \wedge is sometimes used to refer to the minimum of two elements). Then for any $x, y \in \mathbb{R}^{\omega}{ }^{2}$, let

$$
\begin{equation*}
d(x, y)=\sum_{t \in \mathbb{Z}_{+}} \beta^{-t} \rho\left(x_{t}, y_{t}\right) \tag{4}
\end{equation*}
$$

denotes the distance between $x=\left(x_{0}, x_{1}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, \ldots\right)$, where x_{t} is the position of x at time t on the real line.
(a) Show that d is a metric on \mathbb{R}^{ω}.
(b) Show that $\left(\mathbb{R}^{\omega}, d\right)$ is a bounded metric space.
(c) Is $[0,1]^{\omega}$ an open or closed subset of \mathbb{R}^{ω} ? (in either case present a proof)
(d) Is $\left(\mathbb{R}^{\omega}, d\right)$ a complete metric space? (prove if yes, otherwise provide a counterexample)
(e) Is $[0,1]^{\omega}$ a totally bounded subset under d ? Is it a compact subset?
3. Let X be a connected space. Let \mathcal{R} be an equivalence relation on X such that for each $x \in X$, there exists an open set \mathcal{O}_{x} containing x such that $\mathcal{O}_{x} \subset[x]$. Show that \mathcal{R} has only one (distinct) equivalence class.

[^0]4. Define the correspondence $\Gamma:[0,1] \rightarrow 2^{[0,1]}$ by:
\[

\Gamma(x)=\left\{$$
\begin{array}{ll}
{[0,1] \cap \mathbb{Q}} & \text { if } x \in[0,1] \backslash \mathbb{Q} \tag{5}\\
{[0,1] \backslash \mathbb{Q}} & \text { if } x \in[0,1] \cap \mathbb{Q}
\end{array}
$$.\right.
\]

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?
5. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$. Recall that the left-hand limit of f at $t \in \mathbb{R}_{+} \backslash\{0\}$ (if it exists) is

$$
\begin{align*}
f\left(t^{-}\right) & =\lim _{s \rightarrow t^{-}} f(s) \tag{6}\\
& =\lim _{s_{n} \rightarrow t} f\left(s_{n}\right) \text { for any sequence } s_{n} \rightarrow t \text { such that } s_{n}<t \forall n
\end{align*}
$$

(a) Give an example of a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ that is not continuous but has a finite left-hand limit at some point $s>0$ (that is, such that $f\left(s^{-}\right)$exists and $\left.f\left(s^{-}\right)<\infty\right)$.
(b) Suppose $f\left(t^{-}\right)$exists and is finite for all $t>0$. Let $f^{-}: \mathbb{R}_{+} \backslash\{0\} \rightarrow \mathbb{R}$ be given by $f^{-}(t)=f\left(t^{-}\right)$. Show that f^{-}is left-continuous at each $t>0$. Namely, show that if $t>0$ and $\left\{s_{n}\right\}$ is a sequence such that $s_{n}<t \forall n$ and $s_{n} \rightarrow t$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{-}\left(s_{n}\right)=f^{-}(t)=f\left(t^{-}\right) \tag{7}
\end{equation*}
$$

Hint: When $f\left(t^{-}\right)$exists and is finite, it is equivalently characterized as follows:

$$
\begin{equation*}
f\left(t^{-}\right)=\sup _{s<t} \inf \{f(v): s \leq v<t\}=\inf _{s<t} \sup \{f(v): s \leq v<t\} \tag{8}
\end{equation*}
$$

[^0]: ${ }^{1}$ Please keep your answers short and concise. The solution to each question could well fit in at most one page.
 ${ }^{2}$ For the definition of \mathbb{R}^{ω} please refer to Q3 of ps. 1

