1. Let A be an $n \times n$ matrix.

 (a) Show that if λ is an eigenvalue of A then λ^k is an eigenvalue of A^k for $k \in \mathbb{N}$.

 (b) Show that if λ is an eigenvalue of the invertible matrix A then $1/\lambda$ is an eigenvalue of A^{-1}.

 (c) The eigenspace of an eigenvalue λ_i is the kernel of $A - \lambda_i I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_i is a vector space.

2. Show that similar matrices have the same trace (hint: first show that for any two $n \times n$ matrices A, B, $\text{tr}(AB) = \text{tr}(BA)$).

3. Give an example of a linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that $\text{ker} T = \text{im} T$.

4. Call a function $T : V \rightarrow W$ additive if $T(x + y) = T(x) + T(y)$ for every $x, y \in V$.

 (a) If V, W are vector spaces defined over the field of rational numbers, prove that every additive function is linear.

 (b) Prove that there is some additive function $T : \mathbb{R} \rightarrow \mathbb{R}$ that is not linear.

5. Suppose a linear transformation $T : \mathbb{R}^k \rightarrow \mathbb{R}^k$ has the property that $T^n = 0$ for some integer $n > 0$. Show that T is not invertible, but that $T + I$ is invertible (hint: the inverse is a polynomial function of T).