Econ 204 - Problem Set 4

Due Tuesday, August 4

1. Let A be an $n \times n$ matrix.
(a) Show that if λ is an eigenvalue of A then λ^{k} is an eigenvalue of A^{k} for $k \in \mathbb{N}$.
(b) Show that if λ is an eigenvalue of the invertible matrix A then $1 / \lambda$ is an eigenvalue of A^{-1}.
(c) The eigenspace of an eigenvalue λ_{i} is the kernel of $A-\lambda_{i} I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_{i} is a vector space.
2. Show that similar matrices have the same trace (hint: first show that for any two $n \times n$ matrices $A, B, \operatorname{tr}(A B)=\operatorname{tr}(B A))$.
3. Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that ker $T=$ $\operatorname{im} T$.
4. Call a function $T: V \rightarrow W$ additive if $T(x+y)=T(x)+T(y)$ for every $x, y \in V$.
(a) If V, W are vector spaces defined over the field of rational numbers, prove that every additive function is linear.
(b) Prove that there is some additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ that is not linear.
5. Suppose a linear transformation $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ has the property that $T^{n}=0$ for some integer $n>0$. Show that T is not invertible, but that $T+I$ is invertible (hint: the inverse is a polynomial function of T).
