Econ 204 – Problem Set 4

Due Tuesday, August 4

- 1. Let A be an $n \times n$ matrix.
 - (a) Show that if λ is an eigenvalue of A then λ^k is an eigenvalue of A^k for $k \in \mathbb{N}$.
 - (b) Show that if λ is an eigenvalue of the invertible matrix A then $1/\lambda$ is an eigenvalue of A^{-1} .
 - (c) The eigenspace of an eigenvalue λ_i is the kernel of $A \lambda_i I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_i is a vector space.
- 2. Show that similar matrices have the same trace (hint: first show that for any two $n \times n$ matrices $A, B, \operatorname{tr}(AB) = \operatorname{tr}(BA)$).
- 3. Give an example of a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that $\ker T=\operatorname{im} T.$
- 4. Call a function $T: V \to W$ additive if T(x+y) = T(x) + T(y) for every $x, y \in V$.
 - (a) If V, W are vector spaces defined over the field of rational numbers, prove that every additive function is linear.
 - (b) Prove that there is some additive function $T : \mathbb{R} \to \mathbb{R}$ that is not linear.
- 5. Suppose a linear transformation $T : \mathbb{R}^k \to \mathbb{R}^k$ has the property that $T^n = 0$ for some integer n > 0. Show that T is not invertible, but that T + I is invertible (hint: the inverse is a polynomial function of T).