Econ 204 – Problem Set 5

Due Friday August 4, 2017 $^{\rm 1}$

1. Assume that $f:[0,\infty) \to \mathbb{R}$ is differentiable for all x > 0, and $f'(x) \to 0$ as $x \to \infty$. Prove

$$\lim_{x \to \infty} [f(x+1) - f(x)] \to 0.$$
(1)

Hint: Use the mean value theorem, and then send $x \to \infty$.

- 2. Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $F(x, y) = (e^y \cos(x), e^y \sin(x)).$
 - (a) Show that F satisfies the prerequisites of the Inverse Function Theorem for all $(x, y) \in \mathbb{R}^2$ (and is therefore locally injective everywhere) but F is not globally injective.
 - (b) Compute the Jacobian of the local inverse of F and evaluate it at $F\left(\frac{\pi}{3},0\right)$.
 - (c) Find an explicit formula for the continuous inverse of F mapping a neighborhood of $F\left(\frac{\pi}{3},0\right)$ into a neighborhood of $\left(\frac{\pi}{3},0\right)$ and verify that its Jacobian at $F\left(\frac{\pi}{3},0\right)$ equals the one you calculated in (ii).
- 3. Let $f_n : \mathbb{R} \to \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $|f'_n(x)| \leq 1$ for all n and x. Assume,

$$\lim_{n \to \infty} f_n(x) = g(x) \tag{2}$$

for all x. Prove that $g : \mathbb{R} \to \mathbb{R}$ is Lipschitz-continuous.

4. The goal of this exercise is to verify the **Banach-Steinhaus** theorem. Let $\{T_n\}$ be a sequence of bounded linear functions $T_n : X \to Y$ from a Banach (complete normed vector) space X into a normed vector space Y, such that $\{T_n(x)\}$ is bounded for every $x \in X$, that is for all $x \in X$ there exists $c_x \in \mathbb{R}_+$ such that:

$$\left\|T_n(x)\right\| \le c_x \quad \forall n \in \mathbb{N} \tag{3}$$

Then, we want to show that the sequence of norms $\{||T_n||\}$ is bounded, that is there exists c > 0 such that $||T_n|| \le c$ for all $n \in \mathbb{N}$.

- (a) For every $k \in \mathbb{N}$ let $A_k \subseteq X$ be the set of all $x \in X$ such that $||T_n(x)|| \leq k$ for all n. Show that A_k is closed under the X-norm.
- (b) Use equation (3) to show that $X = \bigcup_{k \in \mathbb{N}} A_k$.
- (c) The **Baire's** theorem states that in this case since X is complete, there exists some A_{k_0} that contains an open ball, say $B(x_0, \varepsilon) \subseteq A_{k_0}$. Take this result as given, and prove there exists some constant c > 0 such that

$$\|T_n\| \le c \quad \forall n \in \mathbb{N}. \tag{4}$$

Hint: For every nonzero $x \in X$ there exists $\gamma > 0$ such that $x = \frac{1}{\gamma}(z - x_0)$, where $x_0, z \in B(x_0, \varepsilon)$ and $\gamma > 0$.

¹Please keep your answers short and concise. The solution to each question could well fit in at most one page.