Econ 204 - Problem Set 5

Due Friday August 4, $2017{ }^{1}$

1. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable for all $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Prove

$$
\begin{equation*}
\lim _{x \rightarrow \infty}[f(x+1)-f(x)] \rightarrow 0 \tag{1}
\end{equation*}
$$

Hint: Use the mean value theorem, and then send $x \rightarrow \infty$.
2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $F(x, y)=\left(e^{y} \cos (x), e^{y} \sin (x)\right)$.
(a) Show that F satisfies the prerequisites of the Inverse Function Theorem for all $(x, y) \in \mathbb{R}^{2}$ (and is therefore locally injective everywhere) but F is not globally injective.
(b) Compute the Jacobian of the local inverse of F and evaluate it at $F\left(\frac{\pi}{3}, 0\right)$.
(c) Find an explicit formula for the continuous inverse of F mapping a neighborhood of $F\left(\frac{\pi}{3}, 0\right)$ into a neighborhood of $\left(\frac{\pi}{3}, 0\right)$ and verify that its Jacobian at $F\left(\frac{\pi}{3}, 0\right)$ equals the one you calculated in (ii).
3. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $\left|f_{n}^{\prime}(x)\right| \leq 1$ for all n and x. Assume,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=g(x) \tag{2}
\end{equation*}
$$

for all x. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz-continuous.
4. The goal of this exercise is to verify the Banach-Steinhaus theorem. Let $\left\{T_{n}\right\}$ be a sequence of bounded linear functions $T_{n}: X \rightarrow Y$ from a Banach (complete normed vector) space X into a normed vector space Y, such that $\left\{T_{n}(x)\right\}$ is bounded for every $x \in X$, that is for all $x \in X$ there exists $c_{x} \in \mathbb{R}_{+}$such that:

$$
\begin{equation*}
\left\|T_{n}(x)\right\| \leq c_{x} \quad \forall n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Then, we want to show that the sequence of norms $\left\{\left\|T_{n}\right\|\right\}$ is bounded, that is there exists $c>0$ such that $\left\|T_{n}\right\| \leq c$ for all $n \in \mathbb{N}$.
(a) For every $k \in \mathbb{N}$ let $A_{k} \subseteq X$ be the set of all $x \in X$ such that $\left\|T_{n}(x)\right\| \leq k$ for all n. Show that A_{k} is closed under the X-norm.
(b) Use equation (3) to show that $X=\bigcup_{k \in \mathbb{N}} A_{k}$.
(c) The Baire's theorem states that in this case since X is complete, there exists some $A_{k_{0}}$ that contains an open ball, say $B\left(x_{0}, \varepsilon\right) \subseteq A_{k_{0}}$. Take this result as given, and prove there exists some constant $c>0$ such that

$$
\begin{equation*}
\left\|T_{n}\right\| \leq c \quad \forall n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Hint: For every nonzero $x \in X$ there exists $\gamma>0$ such that $x=\frac{1}{\gamma}\left(z-x_{0}\right)$, where $x_{0}, z \in B\left(x_{0}, \varepsilon\right)$ and $\gamma>0$.

[^0]
[^0]: ${ }^{1}$ Please keep your answers short and concise. The solution to each question could well fit in at most one page.

