Econ 204 - Problem Set 6

Due Monday, August 4 at noon in Walker's mailbox

1. Call a vector $\pi \in \mathbb{R}^{n}$ a probability vector if

$$
\sum_{i}^{n} \pi_{i}=1 \text { and } \pi_{i} \geq 0 \forall i
$$

We say there are n states of the world, and π_{i} is the probability that state i occurs. Suppose there are two traders (trader 1 and trader 2) who each have a set of prior probability distributions $\left(\Pi_{1}\right.$ and $\left.\Pi_{2}\right)$ which are nonempty, convex, and compact. Call a trade a vector $f \in \mathbb{R}^{n}$, which denotes the net transfer trader 1 receives in each state of the world (and thus $-f$ is the net transfer trader 2 receives in each state of the world). A trade is agreeable if

$$
\inf _{\pi \in \Pi_{1}} \sum_{i=1}^{n} \pi_{i} f_{i}>0 \text { and } \inf _{\pi \in \Pi_{2}} \sum_{i=1}^{n} \pi_{i}\left(-f_{i}\right)>0
$$

Prove that there exists an agreeable trade if and only if there is no common prior (that is, $\Pi_{1} \cap \Pi_{2}=\varnothing$).
2. Let A be a nonempty, compact and convex subset of \mathbb{R}^{2} such that if $(x, y) \in A$ for some $x, y \in \mathbb{R}$ then there exists some $z \in \mathbb{R}$ such that $(y, z) \in A$. Prove that $\left(x^{*}, x^{*}\right) \in A$ for some $x^{*} \in \mathbb{R}$.
3. Show that the closure of a convex set is convex.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1} function and define $F: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
F(x, \omega)=f\left(x_{1}, x_{2}\right)+2\left(\omega_{1}+\omega_{2}, \omega_{2}\right)+3\left(\omega_{1}^{3}, \omega_{2}^{3}\right)
$$

Show that there is a set of Lebesgue measure zero, $\Omega_{0} \subset \mathbb{R}^{2}$, such that if $\omega \notin \Omega_{0}$, then for each x_{0} satisfying $F\left(x_{0}, \omega_{0}\right)=0$ there is an open set U containing x_{0}, an open set V containing ω_{0}, and a C^{1} function $h: V \rightarrow U$ such that for all $\omega \in V, x=h(\omega)$ is the unique element of U satisfying $F(x, \omega)=0$.
5. Define an open half-space as $S=\left\{y \in \mathbb{R}^{n}: p \cdot y<c\right\}$ for some $p \in \mathbb{R}^{n}$ and $c \in R$. Show that if $B \subset \mathbb{R}^{n}$ is open and convex, then $B=\cap_{i \in I} S_{i}$ where $\left\{S_{i}: i \in I\right\}$ is the set of all such open half-spaces containing B.
6. Consider the following sytsem of first order differential equations:

$$
\begin{aligned}
\dot{x} & =x^{1 / 4}-y \\
\dot{y} & =y\left[\frac{3}{2} x^{-2 / 3}-\frac{1}{10}\right]
\end{aligned}
$$

(a) Plot the $\dot{x}=0$ and $\dot{y}=0$ loci for $x>0$ in a phase diagram. Show the steady state, the direction of motion, and the approximate location of the stable and unstable arms.
(b) Linearize the system using a Taylor-series expansion around the $x>0$ steady state. Write down the linearized equations.
(c) Plot a phase diagram for the linearized system and compare the behavior at the steady state of the two systems.
(d) Give the general solution of the linearized system.

