Econ 204 – Problem Set 6
Due Monday, August 4 at noon in Walker’s mailbox

1. Call a vector \(\pi \in \mathbb{R}^n \) a probability vector if
 \[
 \sum_{i=1}^{n} \pi_i = 1 \quad \text{and} \quad \pi_i \geq 0 \quad \forall i
 \]
 We say there are \(n \) states of the world, and \(\pi_i \) is the probability that
 state \(i \) occurs. Suppose there are two traders (trader 1 and trader 2) who
 each have a set of prior probability distributions \((\Pi_1, \Pi_2) \) which are
 nonempty, convex, and compact. Call a trade a vector \(f \in \mathbb{R}^n \), which
 denotes the net transfer trader 1 receives in each state of the world (and
 thus \(-f \) is the net transfer trader 2 receives in each state of the world).
 A trade is agreeable if
 \[
 \inf_{\pi \in \Pi_1} \sum_{i=1}^{n} \pi_i f_i > 0 \quad \text{and} \quad \inf_{\pi \in \Pi_2} \sum_{i=1}^{n} \pi_i (-f_i) > 0
 \]
 Prove that there exists an agreeable trade if and only if there is no common
 prior (that is, \(\Pi_1 \cap \Pi_2 = \emptyset \)).

2. Let \(A \) be a nonempty, compact and convex subset of \(\mathbb{R}^2 \) such that if
 \((x, y) \in A \) for some \(x, y \in \mathbb{R} \) then there exists some \(z \in \mathbb{R} \) such
 that \((y, z) \in A \). Prove that \((x^*, x^*) \in A \) for some \(x^* \in \mathbb{R} \).

3. Show that the closure of a convex set is convex.

4. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be a \(C^1 \) function and define \(F : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \) by
 \[
 F(x, \omega) = f(x_1, x_2) + 2(\omega_1 + \omega_2, \omega_2) + 3(\omega_1, \omega_2^2).
 \]
 Show that there is a set of Lebesgue measure zero, \(\Omega_0 \subset \mathbb{R}^2 \), such that if
 \(\omega \notin \Omega_0 \), then for each \(x_0 \) satisfying \(F(x_0, \omega_0) = 0 \) there is an open set \(U \)
 containing \(x_0 \), an open set \(V \) containing \(\omega_0 \), and a \(C^1 \) function \(h : V \to U \)
 such that for all \(\omega \in V \), \(x = h(\omega) \) is the unique element of \(U \)
 satisfying \(F(x, \omega) = 0 \).

5. Define an open half-space as \(S = \{ y \in \mathbb{R}^n : p \cdot y < c \} \) for some \(p \in \mathbb{R}^n \)
 and \(c \in \mathbb{R} \). Show that if \(B \subset \mathbb{R}^n \) is open and convex, then \(B = \cap_{i \in I} S_i \)
 where \(\{S_i : i \in I\} \) is the set of all such open half-spaces containing \(B \).

6. Consider the following system of first order differential equations:
 \[
 \begin{align*}
 \dot{x} &= x^{1/4} - y \\
 \dot{y} &= y[3/2 x^{-2/3} - 1/x^2]
 \end{align*}
 \]
 (a) Plot the \(\dot{x} = 0 \) and \(\dot{y} = 0 \) loci for \(x > 0 \) in a phase diagram. Show the
 steady state, the direction of motion, and the approximate location
 of the stable and unstable arms.
(b) Linearize the system using a Taylor-series expansion around the $x > 0$ steady state. Write down the linearized equations.

(c) Plot a phase diagram for the linearized system and compare the behavior at the steady state of the two systems.

(d) Give the general solution of the linearized system.