Econ 204 2018

Lecture 10

Outline

1. Diagonalization of Real Symmetric Matrices
2. Application to Quadratic Forms
3. Linear Maps Between Normed Spaces

Announcements:
- PS 3 due now
 → solutions × 2 pm today
- PS 4 posted
 → due Tuesday
- last year’s exam packed × Sunday
How Might This Matter

- Why does diagonalizability matter?

Consider a two-dimensional linear difference equation:

\[
\begin{pmatrix} c_{t+1} \\ k_{t+1} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} c_t \\ k_t \end{pmatrix} \quad \forall t = 0, 1, 2, 3, \ldots
\]

given an initial condition \(c_0, k_0\), or, setting

\[
y_t = \begin{pmatrix} c_t \\ k_t \end{pmatrix} \quad \forall t \quad \text{and} \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}
\]

we can rewrite this more compactly as

\[
y_{t+1} = By_t \quad \forall t
\]

where \(b_{ij} \in \mathbb{R}\) each \(i, j\).
We want to find a solution y_t, $t = 1, 2, 3, \ldots$ given initial condition y_0. (Why?)

Such a dynamical system will arise for example as a characterization of the solution to a standard infinite-horizon optimal growth problem (202a, lecture 2).

If B is diagonalizable, this can be easily solved after a change of basis. If B is diagonalizable, choose an invertible 2×2 real matrix P such that

$$P^{-1}BP = D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$

Then

$$y_{t+1} = By_t \quad \forall t \iff P^{-1}y_{t+1} = P^{-1}By_t \quad \forall t \quad \text{(multiplied by P^{-1})}$$

$$\iff \begin{pmatrix} P^{-1}y_{t+1} \end{pmatrix} = \begin{pmatrix} P^{-1}BP \end{pmatrix} \begin{pmatrix} P^{-1}y_t \end{pmatrix} \quad \forall t \quad pp^{-1} = I$$

$$\iff \bar{y}_{t+1} = D\bar{y}_t \quad \forall t$$

$$= \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \begin{pmatrix} \bar{y}_t \end{pmatrix}$$

where $\bar{y}_t = P^{-1}y_t \quad \forall t$
where $\bar{y}_t = P^{-1}y_t \ \forall t$.

Since D is diagonal, after a change of basis to \bar{y}_t, we need to solve two independent linear univariate difference equations, which is easy:

$$\bar{y}_{it} = d_{it}\bar{y}_{i0} \ \forall t$$

- Not all real $n \times n$ matrices are diagonalizable (not even all invertible $n \times n$ matrices are)...so can we identify some classes that are?
 - basis of eigenvectors (\iff)
 - n distinct eigenvalues (\iff)

- Some types of matrices appear more frequently than others – especially real symmetric $n \times n$ matrices (matrix representation of second derivatives of C^2 functions, quadratic forms...).
 - e.g. second order conditions in optimization, checking concavity and convexity, Taylor series approximation of function
• Recall that an $n \times n$ real matrix A is symmetric if $a_{ij} = a_{ji}$ for all i, j, where a_{ij} is the $(i, j)^{th}$ entry of A.
Orthonormal Bases

Definition 1. Let

\[\delta_{ij} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases} \]

A basis \(V = \{v_1, \ldots, v_n\} \) of \(\mathbb{R}^n \) is orthonormal if \(v_i \cdot v_j = \delta_{ij} \).

In other words, a basis is orthonormal if each basis element has unit length \((\|v_i\|^2 = v_i \cdot v_i = 1 \ \forall i) \), and distinct basis elements are perpendicular \((v_i \cdot v_j = 0 \text{ for } i \neq j) \).
Orthonormal Bases

Remark: Suppose that \(x = \sum_{j=1}^{n} \alpha_j v_j \) where \(\{v_1, \ldots, v_n\} \) is an orthonormal basis of \(\mathbb{R}^n \). Then

\[
x \cdot v_k = \left(\sum_{j=1}^{n} \alpha_j v_j \right) \cdot v_k \\
= \sum_{j=1}^{n} \alpha_j (v_j \cdot v_k) \\
= \sum_{j=1}^{n} \alpha_j \delta_{jk} = \sum_{j=1}^{n} \alpha_j \delta_{jk}^{s=k} = \delta_{k}^{s=k} = \alpha_k
\]

so

\[
x = \sum_{j=1}^{n} (x \cdot v_j) v_j
\]
Example: The standard basis of \mathbb{R}^n is orthonormal.

$e_i = (0, \ldots, 1, 0, \ldots, 0) \quad i = 1, \ldots, n$

(Why?)

e.g., \mathbb{R}^2: $e_1 = (1, 0)$, $e_2 = (0, 1)$

others? e.g., $v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, $v_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

also many bases that are not orthonormal
\[\mathbf{e}_2 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \]

\[\mathbf{e}_1 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \]

\[\mathbf{v}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \]

\[\mathbf{v}_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \]
Unitary Matrices

Recall that for a real $n \times m$ matrix A, A^\top denotes the transpose of A: the $(i,j)^{th}$ entry of A^\top is the $(j,i)^{th}$ entry of A.

So the i^{th} row of A^\top is the i^{th} column of A.

Definition 2. A real $n \times n$ matrix A is unitary if $A^\top = A^{-1}$.

Notice that by definition every unitary matrix is invertible.
Unitary Matrices

Theorem 1. A real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.

Proof. Let v_j denote the j^{th} column of A.

\[
A^\top = A^{-1} \iff A^\top A = I = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} \\
\iff v_i \cdot v_j = \delta_{ij} \quad \forall i, j \\
\iff \{v_1, \ldots, v_n\} \text{ is orthonormal}
\]

\[\square\]
If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbb{R}^n. Since A is unitary, it is invertible, so V is a basis of \mathbb{R}^n. \(\{v_1, \ldots, v_n\} \) linearly independent

\[
A^\top = A^{-1} = Mtx_{V,W}(id) = \text{change of basis from } W \text{ to } V
\]

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.
Thus: Let C be an $n \times n$ real symmetric matrix. Then C is diagonalizable. In addition,

$$C = P^{-1}DP$$

where D is a diagonal matrix and P is unitary.

Note: The diagonal elements d_1, \ldots, d_n of D are the eigenvalues of C.

- C has orthonormal eigenvectors v_1, \ldots, v_n that are a basis for \mathbb{R}^n.
Diagonalization of Real Symmetric Matrices

Theorem 2. Let $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and W be the standard basis of \mathbb{R}^n. Suppose that $Mtx_W(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consisting of eigenvectors of T, so that $Mtx_W(T)$ is diagonalizable:

$$Mtx_W(T) = Mtx_W,V(id) \cdot Mtx_V(T) \cdot Mtx_V,W(id)$$

where $Mtx_V T$ is diagonal and the change of basis matrices $Mtx_{V,W}(id)$ and $Mtx_{W,V}(id)$ are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. A brief outline is in the notes.
Quadratic Forms

Example: Let \(f : \mathbb{R}^2 \to \mathbb{R} \)

\[
f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2
\]

Let \(A \) write as \(f(x) = x^T A x \), \(A \) symmetric

\[
A = \begin{pmatrix}
\alpha & \beta \\
\beta & 2
\end{pmatrix}
\]

\[
x^T A x = (x_1, x_2) \begin{pmatrix}
\alpha & \beta \\
\beta & 2
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\]
so A is symmetric and

$$x^\top A x = (x_1, x_2) \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= (x_1, x_2) \begin{pmatrix} \alpha x_1 + \frac{\beta}{2} x_2 \\ \frac{\beta}{2} x_1 + \gamma x_2 \end{pmatrix}$$

$$= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2$$

$$= f(x)$$

Notice $f(0) = 0$.

Can we determine anything about $f(x)$ for $x \neq 0$?

e.g. $f(x) > 0 \ \forall x$? easy if $\beta = 0$..
Quadratic Forms

Consider a quadratic form:

\[f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \alpha_{ii}x_i^2 + \sum_{i<j} \beta_{ij}x_ix_j \]

Let

\[\alpha_{ij} = \begin{cases} \frac{\beta_{ij}}{2} & \text{if } i < j \\ \frac{\beta_{ii}}{2} & \text{if } i > j \end{cases} \]

Let

\[A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix} \]

so \(f(x) = x^\top Ax \)
Quadratic Forms

A is symmetric, so let $V = \{v_1, \ldots, v_n\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$.

Then $A = U^\top DU = U^\top \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} U$

where $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$

and $U = Mtx_{V,W}(id)$ is unitary

The columns of U^\top (the rows of U) are the coordinates of v_1, \ldots, v_n, expressed in terms of the standard basis W. Given $x \in \mathbb{R}^n$, recall

$$x = \sum_{i=1}^n \gamma_i v_i \text{ where } \gamma_i = x \cdot v_i$$
Quadratic Forms

So

\[f(x) = f \left(\sum \gamma_i v_i \right) \]
\[= \left(\sum \gamma_i v_i \right)^T A \left(\sum \gamma_i v_i \right) = \sum \lambda_i \gamma_i^2 \]
\[= \left(\sum \gamma_i v_i \right)^T U^T DU \left(\sum \gamma_i v_i \right) \]
\[= \left(U \sum \gamma_i v_i \right)^T D \left(U \sum \gamma_i v_i \right) \]
\[= \left(\sum \gamma_i U v_i \right)^T D \left(\sum \gamma_i U v_i \right) \]
\[= (\gamma_1, \ldots, \gamma_n) D \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix} \]
\[= \sum \lambda_i \gamma_i^2 \]

\(\lambda_i \) are eigenvalues of \(A \).
Quadratic Forms

The equation for a level set of f is

$$\mathbb{R}^n : f(\mathbf{x}) = C = \left\{ \mathbf{y} \in \mathbb{R}^n : \sum_{i=1}^{n} \lambda_i y_i^2 = C \right\}$$

- If $\lambda_i \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \geq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C < 0$.
 $$\Rightarrow \text{f has global min at 0, } f(x) \geq 0 \quad \forall x$$

- If $\lambda_i \leq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal
 $$\Rightarrow \text{f has global max at 0, } f(x) \leq 0 \quad \forall x$$
axis along v_i is $\sqrt{C/\lambda_i}$ if $C \leq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C > 0$.

- **If $\lambda_i > 0$ for some i and $\lambda_j < 0$ for some j,** the level set is a hyperboloid. For example, suppose $n = 2$, $\lambda_1 > 0$, $\lambda_2 < 0$. The equation is

$$C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2$$

$$= (\sqrt{\lambda_1 \gamma_1} + \sqrt{|\lambda_2| \gamma_2}) (\sqrt{\lambda_1 \gamma_1} - \sqrt{|\lambda_2| \gamma_2})$$

\implies if has a saddle point at 0

min with respect to v_i

max with respect to v_j
This is a hyperbola with asymptotes

\[
0 = \sqrt{\lambda_1 \gamma_1} + \sqrt{|\lambda_2| \gamma_2} \\
\Rightarrow \gamma_1 = -\sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2 \\
0 = \left(\sqrt{\lambda_1 \gamma_1} - \sqrt{|\lambda_2| \gamma_2} \right) \\
\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2
\]
$\lambda_1 > 0, \lambda_2 > 0$

f has a global min at 0
\[\lambda_1 > 0, \lambda_2 < 0 \]

\[\gamma_1 = \sqrt{|\lambda_2|/\lambda_1} \gamma_2 \]

\[\gamma_1 = -\sqrt{|\lambda_2|/\lambda_1} \gamma_2 \]

\[\exists x \in \mathbb{R}^n : f(x) = 0 \]

\[f \text{ has a saddle point at } 0 \]
Quadratic Forms

This proves the following corollary of Theorem 2.

Corollary 1. Consider the quadratic form (1). Let \(\{v_1, \ldots, v_n\} \) be an orthonormal basis of eigenvectors of \(A \) with corresponding eigenvalues \(\{\lambda_1, \ldots, \lambda_n\} \).

1. \(f \) has a global minimum at 0 if and only if \(\lambda_i \geq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

2. \(f \) has a global maximum at 0 if and only if \(\lambda_i \leq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).
3. If $\lambda_i < 0$ for some i and $\lambda_j > 0$ for some j, then f has a saddle point at 0; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n.
Bounded Linear Maps

Definition 3. Suppose X, Y are normed vector spaces and $T \in L(X, Y)$. We say T is bounded if

$$\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\|_Y \leq \beta \|x\|_X \quad \forall x \in X$$

Note this implies that T is Lipschitz with constant β.

why not previous notion of bounded:

$$\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\| \leq \beta \quad \forall x$$

$T(\alpha x) = \alpha T(x) \quad \forall \alpha \in \mathbb{R}$

$\Rightarrow \quad \|T(\alpha x)\| = |\alpha| \|T(x)\| \quad \forall \alpha \in \mathbb{R}$
Bounded Linear Maps

Much more is true:

Theorem 3 (Thms. 4.1, 4.3). Let \(X \) and \(Y \) be normed vector spaces and \(T \in L(X, Y) \). Then

\[
T \text{ is continuous at some point } x_0 \in X \iff T \text{ is continuous at every } x \in X \iff T \text{ is uniformly continuous on } X \iff T \text{ is Lipschitz} \iff T \text{ is bounded}
\]

Proof. Suppose \(T \) is continuous at \(x_0 \). Fix \(\varepsilon > 0 \). Then there exists \(\delta > 0 \) such that

\[
\| z - x_0 \| < \delta \Rightarrow \| T(z) - T(x_0) \| < \varepsilon
\]
Now suppose x is any element of X. If $\|y - x\| < \delta$, let $z = y - x + x_0$, so $\|z - x_0\| = \|y - x\| < \delta$.

\[
\begin{align*}
\|T(y) - T(x)\| &= \|T(y - x)\| \\
&= \|T(y - x + x_0 - x_0)\| = \|T(z - x_0)\| \\
&< \varepsilon
\end{align*}
\]

which proves that T is continuous at every x, and uniformly continuous.

We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded. Then

\[
\exists \{x_n\} \text{ s.t. } \|T(x_n)\| > n\|x_n\| \quad \forall n
\]
Note that \(x_n \neq 0 \). Let \(\varepsilon = 1 \). Fix \(\delta > 0 \) and choose \(n \) such that \(\frac{1}{n} < \delta \). Let

\[
x_n' = \frac{x_n}{n\|x_n\|} = \frac{1}{n}\frac{x_n}{\|x_n\|}
\]

\[
\|x_n'\| = \|x_n\| = \frac{1}{n}\|x_n\| < \delta
\]

\[
\|T(x_n') - T(0)\| = \|T(x_n')\| = \frac{1}{n\|x_n\|}\|T(x_n)\| > \frac{n\|x_n\|}{n\|x_n\|} = 1 = \varepsilon
\]

\[
T(x_n') = \frac{x_n}{n\|x_n\|} = \frac{1}{n}\frac{x_n}{\|x_n\|} = \frac{1}{n}\|x_n\|\|x_n\|\|x_n\| > \frac{n\|x_n\|}{n\|x_n\|} = 1 = \varepsilon
\]
Since this is true for every \(\delta \), \(T \) is not continuous at 0. Therefore, \(T \) continuous at 0 implies \(T \) is bounded. Now, suppose \(T \) is bounded, so find \(M \) such that \(\|T(x)\| \leq M\|x\| \) for every \(x \in X \). Given \(\varepsilon > 0 \), let \(\delta = \varepsilon/M \). Then

\[
\|x - 0\| < \delta \quad \Rightarrow \quad \|x\| < \delta \\
\Rightarrow \quad \|T(x) - T(0)\| = \|T(x)\| < M\delta \\
\Rightarrow \quad \|T(x) - T(0)\| < \varepsilon = M\delta
\]

so \(T \) is continuous at 0.

Thus, we have shown that continuity at some point \(x_0 \) implies uniform continuity, which implies continuity at every point, which implies \(T \) is continuous at 0, which implies that \(T \) is bounded, which implies that \(T \) is continuous at 0, which implies that \(T \) is...
continuous at some x_0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$
\|T(x) - T(y)\| = \|T(x - y)\| \leq M\|x - y\|
$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent. \[\square \]
Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).

Theorem 4 (Thm. 4.5). Let \(X \) and \(Y \) be normed vector spaces, with \(\dim X = n \). Every \(T \in L(X, Y) \) is bounded.

Proof. See de la Fuente.
Topological Isomorphism

Definition 4. A topological isomorphism between normed vector spaces X and Y is a linear transformation $T \in L(X, Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T : X \to Y$.
Suppose X and Y are normed vector spaces. We define

$$B(X,Y) = \{ T \in L(X,Y) : T \text{ is bounded} \}$$

$$\|T\|_{B(X,Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X}, x \in X, x \neq 0 \right\}$$

$$= \sup \{ \|T(x)\|_Y : \|x\|_X = 1 \}$$

$$\Rightarrow \|T(x)\|_Y \leq \|T\|_{B(X,Y)} \|x\|_X$$

by defn.

We skip the proofs of the rest of these results – read dLF.
The Space $B(X, Y)$

Theorem 5 (Thm. 4.8). Let X, Y be normed vector spaces. Then

$$
\left(B(X, Y), \| \cdot \|_{B(X,Y)} \right)
$$

is a normed vector space.
The Space $B(\mathbb{R}^n, \mathbb{R}^m)$

Theorem 6 (Thm. 4.9). Let $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ ($= B(\mathbb{R}^n, \mathbb{R}^m)$) with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max\{|a_{ij}| : 1 \leq i \leq m, 1 \leq j \leq n\}$$

Then

$$M \leq \|T\| \leq M \sqrt{mn}$$
Theorem 7 (Thm. 4.10). Let $R \in L(\mathbb{R}^m, \mathbb{R}^n)$ and $S \in L(\mathbb{R}^n, \mathbb{R}^p)$. Then

$$\|S \circ R\| \leq \|S\|\|R\|$$
Invertibility

Define $\Omega(\mathbb{R}^n) = \{T \in L(\mathbb{R}^n, \mathbb{R}^n) : T \text{ is invertible}\}$

Theorem 8 (Thm. 4.11'). Suppose $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and E is the standard basis of \mathbb{R}^n. Then

T is invertible

$\iff \ker T = \{0\}$

$\iff \det (\text{Mat}_E(T)) \neq 0$

$\iff \det \left(\text{Mat}_{V,V}(T) \right) \neq 0$ for every basis V

$\iff \det \left(\text{Mat}_{V,W}(T) \right) \neq 0$ for every pair of bases V, W
Invertibility

Theorem 9 (Thm. 4.12). If \(S, T \in \Omega(\mathbb{R}^n) \), then \(S \circ T \in \Omega(\mathbb{R}^n) \) and

\[
(S \circ T)^{-1} = T^{-1} \circ S^{-1}
\]
Invertibility

Theorem 10 (Thm. 4.14). Let \(S, T \in L(\mathbb{R}^n, \mathbb{R}^n) \). If \(T \) is invertible and

\[
\|T - S\| < \frac{1}{\|T^{-1}\|}
\]

then \(S \) is invertible. In particular, \(\Omega(\mathbb{R}^n) \) is open in \(L(\mathbb{R}^n, \mathbb{R}^n) = B(\mathbb{R}^n, \mathbb{R}^n) \).

Theorem 11 (Thm. 4.15). The function \((\cdot)^{-1} : \Omega(\mathbb{R}^n) \to \Omega(\mathbb{R}^n)\) that assigns \(T^{-1} \) to each \(T \in \Omega(\mathbb{R}^n) \) is continuous.