Econ 2042018
 Lecture 10

Outline

1. Diagonalization of Real Symmetric Matrices
2. Application to Quadratic Forms
3. Linear Maps Between Normed Spaces

How Might This Matter

- Why does diagonalizability matter?

Consider a two-dimensional linear difference equation:

$$
\binom{c_{t+1}}{k_{t+1}}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\binom{c_{t}}{k_{t}} \quad \forall t=0,1,2,3, \ldots
$$

given an initial condition c_{0}, k_{0}, or, setting

$$
y_{t}=\binom{c_{t}}{k_{t}} \quad \forall t \quad \text { and } \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

we can rewrite this more compactly as

$$
y_{t+1}=B y_{t} \quad \forall t
$$

where $b_{i j} \in \mathbf{R}$ each i, j.

We want to find a solution $y_{t}, t=1,2,3, \ldots$ given initial condition yo. (Why?)

Such a dynamical system will arise for example as a characterization of the solution to a standard infinite-horizon optimal growth problem (202a, lecture 2).

If B is diagonalizable, this can be easily solved after a change of basis. If B is diagonalizable, choose an invertible 2×2 real matrix P such that

$$
P^{-1} B P=D=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)
$$

Then

$$
\begin{aligned}
y_{t+1}=B y_{t} \quad \forall t & \Longleftrightarrow P^{-1} y_{t+1}=P^{-1} B y_{t} \quad \forall t \\
& \Longleftrightarrow P^{-1} y_{t+1}=P^{-1} B P P^{-1} y_{t} \quad \forall t \\
& \Longleftrightarrow \bar{y}_{t+1}=D \bar{y}_{t} \quad \forall t
\end{aligned}
$$

where $\bar{y}_{t}=P^{-1} y_{t} \forall t$.
Since D is diagonal, after a change of basis to \bar{y}_{t}, we need to solve two independent linear univariate difference equations, which is easy:

$$
\bar{y}_{i t}=d_{i}^{t} \bar{y}_{i 0} \quad \forall t
$$

- Not all real $n \times n$ matrices are diagonalizable (not even all invertible $n \times n$ matrices are)...so can we identify some classes that are?
- Some types of matrices appear more frequently than others - especially real symmetric $n \times n$ matrices (matrix representation of second derivatives of C^{2} functions, quadratic forms...).
- Recall that an $n \times n$ real matrix A is symmetric if $a_{i j}=a_{j i}$ for all i, j, where $a_{i j}$ is the $(i, j)^{\text {th }}$ entry of A.

Orthonormal Bases

Definition 1. Let

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

A basis $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{R}^{n} is orthonormal if $v_{i} \cdot v_{j}=\delta_{i j}$.

In other words, a basis is orthonormal if each basis element has unit length ($\left\|v_{i}\right\|^{2}=v_{i} \cdot v_{i}=1 \forall i$), and distinct basis elements are perpendicular $\left(v_{i} \cdot v_{j}=0\right.$ for $i \neq j$).

Orthonormal Bases

Remark: Suppose that $x=\sum_{j=1}^{n} \alpha_{j} v_{j}$ where $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of \mathbf{R}^{n}. Then

$$
\begin{aligned}
x \cdot v_{k} & =\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \cdot v_{k} \\
& =\sum_{j=1}^{n} \alpha_{j}\left(v_{j} \cdot v_{k}\right) \\
& =\sum_{j=1}^{n} \alpha_{j} \delta_{j k} \\
& =\alpha_{k}
\end{aligned}
$$

so

$$
x=\sum_{j=1}^{n}\left(x \cdot v_{j}\right) v_{j}
$$

Orthonormal Bases

Example: The standard basis of \mathbf{R}^{n} is orthonormal.
(Why?)

Unitary Matrices

Recall that for a real $n \times m$ matrix A, A^{\top} denotes the transpose of A : the $(i, j)^{t h}$ entry of A^{\top} is the $(j, i)^{\text {th }}$ entry of A.

So the $i^{\text {th }}$ row of A^{\top} is the $i^{\text {th }}$ column of A.
Definition 2. A real $n \times n$ matrix A is unitary if $A^{\top}=A^{-1}$.

Notice that by definition every unitary matrix is invertible.

Unitary Matrices

Theorem 1. A real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.

Proof. Let v_{j} denote the $j^{\text {th }}$ column of A.

$$
\begin{aligned}
A^{\top}=A^{-1} & \Longleftrightarrow A^{\top} A=I \\
& \Longleftrightarrow v_{i} \cdot v_{j}=\delta_{i j} \forall i, j \\
& \Longleftrightarrow\left\{v_{1}, \ldots, v_{n}\right\} \text { is orthonormal }
\end{aligned}
$$

Unitary Matrices

If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbf{R}^{n}. Since A is unitary, it is invertible, so V is a basis of \mathbf{R}^{n}.

$$
A^{\top}=A^{-1}=M t x_{V, W}(i d)
$$

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.

Diagonalization of Real Symmetric Matrices

Theorem 2. Let $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ and W be the standard basis of \mathbf{R}^{n}. Suppose that $M t x_{W}(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{R}^{n} consisting of eigenvectors of T, so that $\operatorname{Mtx}_{W}(T)$ is diagonalizable:

$$
M t x_{W}(T)=M t x_{W, V}(i d) \cdot M t x_{V}(T) \cdot M t x_{V, W}(i d)
$$

where $M t x_{V} T$ is diagonal and the change of basis matrices $M t x_{V, W}(i d)$ and $M t x_{W, V}(i d)$ are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. A brief outline is in the notes.

Quadratic Forms

Example: Let

$$
f(x)=\alpha x_{1}^{2}+\beta x_{1} x_{2}+\gamma x_{2}^{2}
$$

Let

$$
A=\left(\begin{array}{ll}
\alpha & \frac{\beta}{2} \\
\frac{\beta}{2} & \gamma
\end{array}\right)
$$

so A is symmetric and

$$
\begin{aligned}
x^{\top} A x= & \left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
\alpha & \frac{\beta}{2} \\
\frac{\beta}{2} & \gamma
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\left(x_{1}, x_{2}\right)\binom{\alpha x_{1}+\frac{\beta}{2} x_{2}}{\frac{\beta}{2} x_{1}+\gamma x_{2}} \\
& =\alpha x_{1}^{2}+\beta x_{1} x_{2}+\gamma x_{2}^{2} \\
& =f(x)
\end{aligned}
$$

Quadratic Forms

Consider a quadratic form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \alpha_{i i} x_{i}^{2}+\sum_{i<j} \beta_{i j} x_{i} x_{j} \tag{1}
\end{equation*}
$$

Let

$$
\alpha_{i j}= \begin{cases}\frac{\beta_{i j}}{2} & \text { if } i<j \\ \frac{\beta_{j i}}{2} & \text { if } i>j\end{cases}
$$

Let

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n n}
\end{array}\right) \text { so } f(x)=x^{\top} A x
$$

Quadratic Forms

A is symmetric, so let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

$$
\begin{aligned}
\text { Then } A & =U^{\top} D U \\
\text { where } D & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) \\
\text { and } U & =M t x_{V, W}(i d) \text { is unitary }
\end{aligned}
$$

The columns of U^{\top} (the rows of U) are the coordinates of v_{1}, \ldots, v_{n}, expressed in terms of the standard basis W. Given $x \in \mathbf{R}^{n}$, recall

$$
x=\sum_{i=1}^{n} \gamma_{i} v_{i} \text { where } \gamma_{i}=x \cdot v_{i}
$$

Quadratic Forms

So

$$
\begin{aligned}
f(x) & =f\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} v_{i}\right)^{\top} A\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} v_{i}\right)^{\top} U^{\top} D U\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(U \sum \gamma_{i} v_{i}\right)^{\top} D\left(U \sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} U v_{i}\right)^{\top} D\left(\sum \gamma_{i} U v_{i}\right) \\
& =\left(\gamma_{1}, \ldots, \gamma_{n}\right) D\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right) \\
& =\sum \lambda_{i} \gamma_{i}^{2}
\end{aligned}
$$

Quadratic Forms

The equation for a level set of f is

$$
\left\{\gamma \in \mathbf{R}^{n}: \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}=C\right\}
$$

- If $\lambda_{i} \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_{1}, \ldots, v_{n}. The length of the principal axis along v_{i} is $\sqrt{C / \lambda_{i}}$ if $C \geq 0$ (if $\lambda_{i}=0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C<0$.
- If $\lambda_{i} \leq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_{1}, \ldots, v_{n}. The length of the principal
axis along v_{i} is $\sqrt{C / \lambda_{i}}$ if $C \leq 0$ (if $\lambda_{i}=0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C>0$.
- If $\lambda_{i}>0$ for some i and $\lambda_{j}<0$ for some j, the level set is a hyperboloid. For example, suppose $n=2, \lambda_{1}>0, \lambda_{2}<0$. The equation is

$$
\begin{aligned}
C & =\lambda_{1} \gamma_{1}^{2}+\lambda_{2} \gamma_{2}^{2} \\
& =\left(\sqrt{\lambda_{1}} \gamma_{1}+\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right)\left(\sqrt{\lambda_{1}} \gamma_{1}-\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right)
\end{aligned}
$$

This is a hyperbola with asymptotes

$$
\begin{aligned}
0 & =\sqrt{\lambda_{1}} \gamma_{1}+\sqrt{\left|\lambda_{2}\right|} \gamma_{2} \\
\Rightarrow \gamma_{1} & =-\sqrt{\frac{\left|\lambda_{2}\right|}{\lambda_{1}}} \gamma_{2} \\
0 & =\left(\sqrt{\lambda_{1}} \gamma_{1}-\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right) \\
\Rightarrow \gamma_{1} & =\sqrt{\frac{\left|\lambda_{2}\right|}{\lambda_{1}}} \gamma_{2}
\end{aligned}
$$

$$
\lambda_{1}>0, \lambda_{2}>0
$$

$$
\lambda_{1}>0, \lambda_{2}<0
$$

Quadratic Forms

This proves the following corollary of Theorem 2.
Corollary 1. Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if $\lambda_{i} \geq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.
2. f has a global maximum at 0 if and only if $\lambda_{i} \leq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.
3. If $\lambda_{i}<0$ for some i and $\lambda_{j}>0$ for some j, then f has a saddle point at 0 ; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.

Bounded Linear Maps

Definition 3. Suppose X, Y are normed vector spaces and $T \in L(X, Y)$. We say T is bounded if

$$
\exists \beta \in \mathbf{R} \text { s.t. } \quad\|T(x)\|_{Y} \leq \beta\|x\|_{X} \quad \forall x \in X
$$

Note this implies that T is Lipschitz with constant β.

Bounded Linear Maps

Much more is true:
Theorem 3 (Thms. 4.1, 4.3). Let X and Y be normed vector spaces and $T \in L(X, Y)$. Then

$$
\begin{aligned}
T & \text { is continuous at some point } x_{0} \in X \\
& \Longleftrightarrow T \text { is continuous at every } x \in X \\
& \Longleftrightarrow T \text { is uniformly continuous on } X \\
& \Longleftrightarrow T \text { is Lipschitz } \\
& \Longleftrightarrow T \text { is bounded }
\end{aligned}
$$

Proof. Suppose T is continuous at x_{0}. Fix $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
\left\|z-x_{0}\right\|<\delta \Rightarrow\left\|T(z)-T\left(x_{0}\right)\right\|<\varepsilon
$$

Now suppose x is any element of X. If $\|y-x\|<\delta$, let $z=$ $y-x+x_{0}$, so $\left\|z-x_{0}\right\|=\|y-x\|<\delta$.

$$
\begin{aligned}
& \|T(y)-T(x)\| \\
& \quad=\|T(y-x)\| \\
& \left.=\| T\left(y-x+x_{0}-x_{0}\right)\right) \| \\
& =\left\|T(z)-T\left(x_{0}\right)\right\| \\
& \quad<\varepsilon
\end{aligned}
$$

which proves that T is continuous at every x, and uniformly continuous.

We claim that T is bounded if and only if T is continuous at 0 . Suppose T is not bounded. Then

$$
\exists\left\{x_{n}\right\} \text { s.t. } \quad\left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\| \quad \forall n
$$

Note that $x_{n} \neq 0$. Let $\varepsilon=1$. Fix $\delta>0$ and choose n such that $\frac{1}{n}<\delta$. Let

$$
\begin{aligned}
& x_{n}^{\prime}=\frac{x_{n}}{n\left\|x_{n}\right\|} \\
&\left\|x_{n}^{\prime}\right\|=\frac{\left\|x_{n}\right\|}{n\left\|x_{n}\right\|} \\
&=\frac{1}{n} \\
&<\frac{\delta}{\left\|T\left(x_{n}^{\prime}\right)-T(0)\right\|} \\
&=\left\|T\left(x_{n}^{\prime}\right)\right\| \\
&=\frac{1}{n\left\|x_{n}\right\|}\left\|T\left(x_{n}\right)\right\| \\
&>\frac{n\left\|x_{n}\right\|}{n\left\|x_{n}\right\|} \\
&=1 \\
&=\varepsilon
\end{aligned}
$$

Since this is true for every δ, T is not continuous at 0 . Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded, so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon>0$, let $\delta=\varepsilon / M$. Then

$$
\begin{aligned}
\|x-0\|<\delta & \Rightarrow\|x\|<\delta \\
& \Rightarrow\|T(x)-T(0)\|=\|T(x)\|<M \delta \\
& \Rightarrow\|T(x)-T(0)\|<\varepsilon
\end{aligned}
$$

so T is continuous at 0 .

Thus, we have shown that continuity at some point x_{0} implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0 , which implies that T is bounded, which implies that T is continuous at 0 , which implies that T is
continuous at some x_{0}, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$
\begin{aligned}
\|T(x)-T(y)\| & =\|T(x-y)\| \\
& \leq M\|x-y\|
\end{aligned}
$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent.

Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).

Theorem 4 (Thm. 4.5). Let X and Y be normed vector spaces, with $\operatorname{dim} X=n$. Every $T \in L(X, Y)$ is bounded.

Proof. See de la Fuente.

Topological Isomorphism

Definition 4. A topological isomorphism between normed vector spaces X and Y is a linear transformation $T \in L(X, Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T: X \rightarrow Y$.

The Space $B(X, Y)$

Suppose X and Y are normed vector spaces. We define

$$
\begin{aligned}
B(X, Y) & =\{T \in L(X, Y): T \text { is bounded }\} \\
\|T\|_{B(X, Y)} & =\sup \left\{\frac{\|T(x)\|_{Y}}{\|x\|_{X}}, x \in X, x \neq 0\right\} \\
& =\sup \left\{\|T(x)\|_{Y}:\|x\|_{X}=1\right\}
\end{aligned}
$$

We skip the proofs of the rest of these results - read dIF.

The Space $B(X, Y)$

Theorem 5 (Thm. 4.8). Let X, Y be normed vector spaces.
Then

$$
\left(B(X, Y),\|\cdot\|_{B(X, Y)}\right)
$$

is a normed vector space.

The Space $B\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$

Theorem 6 (Thm. 4.9). Let $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)\left(=B\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)\right)$ with matrix $A=\left(a_{i j}\right)$ with respect to the standard bases. Let

$$
M=\max \left\{\left|a_{i j}\right|: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Then

$$
M \leq\|T\| \leq M \sqrt{m n}
$$

Compositions

Theorem 7 (Thm. 4.10). Let $R \in L\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)$ and $S \in L\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$.
Then

$$
\|S \circ R\| \leq\|S\|\|R\|
$$

Invertibility

Define $\Omega\left(\mathbf{R}^{n}\right)=\left\{T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right): T\right.$ is invertible $\}$
Theorem 8 (Thm. 4.11'). Suppose $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$ and E is the standard basis of \mathbf{R}^{n}. Then
T is invertible
$\Longleftrightarrow \operatorname{ker} T=\{0\}$
$\Longleftrightarrow \operatorname{det}\left(\operatorname{Mtx}_{E}(T)\right) \neq 0$
$\Longleftrightarrow \operatorname{det}\left(M t x_{V, V}(T)\right) \neq 0$ for every basis V
$\Longleftrightarrow \operatorname{det}\left(M t x_{V, W}(T)\right) \neq 0$ for every pair of bases V, W

Invertibility

Theorem 9 (Thm. 4.12). If $S, T \in \Omega\left(\mathbf{R}^{n}\right)$, then $S \circ T \in \Omega\left(\mathbf{R}^{n}\right)$ and

$$
(S \circ T)^{-1}=T^{-1} \circ S^{-1}
$$

Invertibility

Theorem 10 (Thm. 4.14). Let $S, T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. If T is invertible and

$$
\|T-S\|<\frac{1}{\left\|T^{-1}\right\|}
$$

then S is invertible. In particular, $\Omega\left(\mathbf{R}^{n}\right)$ is open in $L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)=$ $B\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$.

Theorem 11 (Thm. 4.15). The function (.) ${ }^{-1}: \Omega\left(\mathbf{R}^{n}\right) \rightarrow$ $\Omega\left(\mathbf{R}^{n}\right)$ that assigns T^{-1} to each $T \in \Omega\left(\mathbf{R}^{n}\right)$ is continuous.

