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Higher Order Differential Equations

A differential equation of order m is an equation of the form

gy () = F(y(),d'(t),..., 4 D(@),1) )
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We can always rewrite an nth order equation as a system of n
first-order equations by redefining variables.
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Second Order Linear Differential Equations

Consider the second order differential equation v’ = cy+ by’ with
b,c € R.

Rewrite this as a first order linear differential equation in two
variables:

Define

_oy [ y(t)
y(t) = ( y’(t) >
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The eigenvalues are the roots of the equation A2 — b\ —c =0,
which are 2£V 22"'40.

The qualitative behavior of the solutions can be explicitly de-
scribed from the coefficients b and ¢, by determining whether
the eigenvalues are real or complex, and whether the real parts

are negative, zero, or positive. [ & ceoctlclienE wkviv AA&&D%VWB



Example Consider the second order linear differential equation

y' =2y+y
ASs above, let

SO the equation becomes

- (0 1) _
The eigenvalues are the roots of the characteristic polynomial
A _A—2=0
Eigenvalues and corresponding eigenvectors are given by
A1 =2 v =(1,2)
Ao =—-1 vy =(1,-1)
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From this information alone, we know the qualitative properties
of the solutions are as given in the phase plane diagram
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Solutions are roughly hyperbolic in shape with asymptotes
along the eigenvectors. Along the eigenvector vq, the solu-
tions flow off to infinity; along the eigenvector v,, the solu-
tions converge to zero.

Solutions flow in directions consistent with flows along asymp-
totes

On the y-axis, we have vy’ = 0, which means that everywhere
on the y-axis (except at the stationary point 0), the solution
must have a vertical tangent.

On the y’-axis, we have y = 0, so we have

y'=2y+y =y



Thus, above the y-axis, vy =14’ > 0, so ¢’ is increasing along
the direction of the solution; below the y-axis, vy = vy’ < 0,
so vy’ is decreasing along the direction of the solution.

e Along the line vy = —2y, v = 2y — 2y = 0, so vy’ achieves a
Mminimum or maximum where it crosses that line.



The general solution is given by

)\ . e2(t—to) 0 . (to)
(5’@)) —Mfiﬁgav(2d>< 0 e—<t—to>)MmWU(Zd)(yy'(t%))
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(11 e2(t—to) 0 1/3 1/3 y(to)
— 2 -1 0 e Gt |\ 2/3 —1/3 |\ ¢/(0)
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The general solution has two real degrees of freedom; a specific
solution is determined by specifying initial conditions y(¢tg) and

y' (to).
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it is easier to find the general solution by setting
y(t) = C1e2(710) 4 Ope=(t-10)

Then = i s ac FEE L eTETE >)
= y(tO) — 01 + 02
y(t) = 207e2(710) _ 0hye~ (o)
< 9 (tg) = 201 —C>
o — Y(to) +y'(to)
= : 3
o, — 2y(o) —y'(to)
2 3 | |
y(t) — y(tO) + vy (tO)ez(t_tO) + 2y(t0) — (to)e_(t_to)
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Inhomogeneous Linear Differential
Equations with Nonconstant Coefficients

Consider the inhomogeneous linear differential equation

y' = M(t)y + H(t) (1)

where M is continuous function from t to the set of nxn matrices;
and H is continuous function from t to R®. W\ %~/ LL%“,Rﬁ )

ot W T
There is a close relationship between solutions of the inhomoge-
neous linear differential equation (1) and the associated homo-
geneous linear differential equation

y' = M(t)y (2)
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Inhomogeneous Linear Differential
Equations with Nonconstant Coefficients

Theorem 1. The general solution of the inhomogeneous linear
differential equation (1) is

yn, + Yp

where y;, is the general solution of the homogeneous linear dif-
ferential equation (2) and vy, is any particular solution of the
inhomogeneous linear differential equation (1).

Proof. Fix any particular solution y, of inhomogeneous equation
(1). Suppose yp is any solution of the corresponding homoge-



neous equation (2). Let y;(t) = yp(t) + yp(2).

y; (1) yp () + v, (t)

M)y (t) + M (t)yp(t) + H(t)
M () (yp(t) + yp(t)) + H(L)

M (t)y;(t) + H(t)

so y; is solution of inhomogeneous equation (1).

Conversely, suppose y; is any solution of inhomogenous equation
(1). Let yp(t) = vi(?) — yp(2).

Y () yi (t) — y (1)

M(t)y;(t) + H(t) — M(t)yp(t) — H(t)
M () (y;(t) — yp(t))

M (t)yp(t)



SO yp, is solution of homogeneous equation (2) and y; = yp, + yp.
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Remark: To find general solution of inhomogeneous equation:

1. Find general solution of homogeneous equation;

2. Find a particular solution of inhomogeneous equation;

3. Add these to get general solution of inhomogeneous equation
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Theorem 2. Consider the inhomogeneous linear differential equa-
tion (1), and suppose that M (t) is a constant matrix M, indepen-
dent of t. A particular solution of the inhomogeneous linear dif-

ferential equation (1), satisfying the initial condition y,(tg) = yo,
Is given by

t
yp(t) = e(t_tO)MyO + /t e(t_S)MH(S) ds (3)
0
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Matrix Exponentials

Here for an n x n matrix M, we define

o Mk M2 TS
(M° = 1) M= Y S =T MA T 2 U D
k=0 . DO (=g “
and
etM: Z
k!
k=0
e if D is a diagonal matrix with diagonal dq,...,dn,
[ed 0 .- 0 \
D 0 e 0

\ 5 o0 ... eéin)
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(s DO MU= G N M- (o= W

Proof. We verify that y, solves (1):

yp(t)

yp(t)

yp(to)

t
e(t—tO)MyO_I_/t e(t—S)MH(S) ds

0

t
e(t—tO)MyO_I_/t e(t—tO)Me—(S—tO)MH(S) ds

0

t NS SIK

e(t—tO)M (yo _|_/to 6_(8_tO)MH(S) ds) — Pitl-ba\f”\

(t—to) M b (s—to)M
Me (yo + /to e H(s) ds) N

et (o=(t-t)M py (1)) e e &

Muyp(t) + H(t) Cork et
t
e(750—750)My0 i /t 0 G(S_tO)MH(S) ds
Yo |
[ ]
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Example Consider the inhomogeneous linear differential equa-

tion
T _ — 7\
Yo 0O —1 Yo COSt Ne = [ \\
By Theorem 2, a particular solution is given by

t
yp(t) = elt=to)My 4 /75 e(t=5)M F1( 5} ds B
0

!
N

et 0 1 t [ e(t=s) 0 Sin s

(O e_t><1>+/0<o 6—(t—8)><c053>d8
et t( et=Ssins

( et > +/o ( eS—tcoss > ds

( el <1 —I—fée_ssinsds) )

et <1 -+ fé e® COS s ds)
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Thus, the general solution of the original inhomogeneous equa-
tion is given by . .\ sl

cala-
Iy Acovf*”"%‘“M T T— qarke o >
Y1
Y2

IE i
( Cyet > n ( <1 + [fe® Sinsds) ) ,\TO"U,\\N@““C’D)Q’
where Dy and D5 are arbitrary real constants.

Coet —t <1 + e coss ds)

Die _smt—l—cost
(D e_t_l_smt—l—cost

) (after much simplification)
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Nonlinear Differential Equations -
Linearization

Nonlinear differential equations are very difficult to solve in
closed form.

Specific techniques solve special classes of equations.

Numerical methods compute numerical solutions of any or-
dinary differential equation.

Linearization can provide qualitative information about the
solutions of nonlinear autonomous equations.
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Example: Pendulum The equation of motion of a frictionless
pendulum is a nonlinear autonomous differential equation

y" = —ozzsiny, a>0

Here, y is the angle between the pendulum and a vertical line.
The fact that the motion follows this differential equation is
obtained by resolving the downward force of gravity into two
components, one tangent to the curve the pendulum follows
and one which is parallel to the pendulum; the latter component
IS canceled by the pendulum rod.
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_oy [ y(@)
y(t) = ( y’(t) >

so differential equation becomes

g/(t) — ( 2y2 (t)

—a“sinyy(t)
Let

F() = ( —aZany; )
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Solve for stationary points: points y such that F(y) = O:

F(7) =0 = (_azyszmyl > — ( 8)

= siny; =0 and y» =0
(=~ yi1=mnmand yp =20

SO set of stationary points is

{(nm,0) :n €7}

Linearize the equation around each of the stationary points:
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Take the first order Taylor polynomial for F': = CM‘ o, )
OF}y 8F1
J dy1  Oyo
F(nm 4+ h,04+ k) +o(|h| + |k|]) = F(ur,0)+
OF> OF5
dy1  Oyo
- 0 1
o —a? cosnm O k
( e o) (1)

e For n even, the eigenvalues are solutions to

A2 4 o2 0
SO A\1 = 1a, Ao = —ix
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Close to (nw,0) for n even, the solutions spiral around the
stationary point. For yo, = y& > 0, yi1 IS increasing, so the
solutions move in a clockwise direction.

For n odd, the eigenvalues solve \2 — a2 = 0, so the eigen-
values and eigenvectors are

=D AheMnes
Q‘\gem\)&x.k«-ﬁ&

Al = a, Ay = —«
% CS}‘\ QHSQ,,._‘ MQ.,\;Q,

(1,0{), v — (17 —O{)

Close to (nm,0) for n odd, the solutions are roughly hyper-
bolic in shape; along vo, they converge to the stationary
point, while along vq, they diverge from the stationary point.
T he solutions of the linearized equation tend to infinity along
v1. The stationary point (nm,0) with n odd corresponds to
the pendulum pointing vertically upwards.
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e From this information alone, we know the qualitative prop-
erties of the solutions of the linearized equation are as given
in the phase plane diagram in Figure 2; the solutions of
the original equation will closely follow these near the .stablte—

DOintS: Stodio r\ouij

— On the y-axis, we have y' = 0, which means that every-
where on the y-axis (except at the stationary points), the
solution must have a vertical tangent.

— Solve ¢ = —ozzsiny = 0, sOo y = nm,; thus, at y = nm,
the derivative of vy’ is zero, so the tangent to the curve is
horizontal.

e If the initial value of |yp| is sufficiently large, the solutions
of the original equation no follow longer closed curves; this



corresponds to the pendulum going “over the top” rather
than oscillating back and forth.
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