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Introductions

Welcome

• 204

• Berkeley Economics

• UC Berkeley

• Berkeley

• California
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• US...



Introductions

• Chris Shannon

• Farzad Pourbabaee

• Walker Ray
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About the Course

• Schedule: Lectures MTWThF 9:00 - 11:30 3108 Etchev-

erry Hall, often going over so don’t schedule anything before

12:00

Sections: MTWThF 1:00 - 2:30 and 2:30 - 4:00, in 648

Evans (please try to split up evenly)

Office hours: Chris Shannon MTWThF 11:30 - 12:30 (end

of lecture + 1 hour) here or 511 Evans, also by appt.

Farzad + Walker MTWThF 4:00 - 5:00 648 Evans

• Final Exam: Wednesday August 15, 9:00 am - 12:00 pm,

10 Evans Hall
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• Prerequisites: Math 53-54 at Berkeley or equivalent

– 4 semesters college mathematics

– linear algebra

– multivariable calculus

– rigorous approach - theorems stated carefully and some

proofs given

– stream for engineers and scientists



Course requirements:

• problems sets: 6 total

(no late problem sets...no exceptions)

• exam

• reading/working on your own

Grade: 10% problem sets (5 highest scores out of 6), 90% final

exam

5



Grading in First Year Economics Courses:

• median grade = B+ : solid command of material

• A and A- are very good grades, A+ for truly exceptional work

• B : ready to go on to further work...a B in 204 means you

are ready to go on to 201a/b, 202a/b, 240a/b

• B- : very marginal, but we won’t make you take the class

again. B- in 204 means you will have a very hard time in

201a/b. Recommend you take Math 53 and 54 this year,

maybe Math 104, come back next year to retake 204 and
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take 201a/b. B- is a passing grade, but you must maintain

a B average

• C: not passing. Definitely not ready for 201a/b, 202a/b,

240a/b. Take Math 53-54 this year, maybe Math 104, retake

204 next year

• 204 with at least a B- (or a waiver from 204 requirement) is

a strictly enforced prerequisite for enrollment in 201a/b

• F: means you didn’t take the final exam. Be sure to withdraw

if you don’t or can’t take the final.



Resources:

Book: de la Fuente, Mathematical Methods and Models for

Economists

Lecture notes: for every lecture + supplements for several topics

Be sure to read Corrections Handout with dlF

Seek out other references
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This class is not normal...

• lectures

• expectations

• classroom stuff
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Goals for 204

• reduce heterogeneity of math backgrounds for students in

Econ graduate classes

• advance everyone’s math skills and knowledge

• present some particular concepts and results used in first-year

economics courses 201a/b, 202a/b, 240a/b

• challenge everyone - so not everyone will understand every-

thing
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• develop basic math skills and knowledge needed to work as

a professional economist and read academic economics

• develop ability to read and evaluate purported proofs...essential

for reading and working in all branches of economics - theo-

retical, empirical, experimental

• develop ability to compose simple proofs...essential to work-

ing in all branches of economics - theoretical, empirical, ex-

perimental

• cover selected material from real analysis and linear algebra

at moderate level of abstraction (considerably more advanced

and abstract than Math 53 + 54)



• not to review Math 53 + 54. If you are weak on this material,

take Math 53-54 this year, and take 204 next year.



Learning by Doing

• to learn this sort of mathematics you need to do more than

just read the book and notes and listen to lectures

• active reading: work through each line, be sure you know

how to get from one line to the next

• active listening: follow each step as we work through argu-

ments in class

• working problems: the most valuable part of the class
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• working in groups strongly encouraged...

• but, always try to work through all of the problems before

talking to others

• everyone must write up his/her own solutions

• best test of understanding: can you explain it to others



Methods of Proof

What is a proof? The million dollar question...

Main Methods of Proof:

• deduction

• contraposition

• induction

• contradiction
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We’ll examine each of these in turn.



Proof by Deduction

Proof by Deduction: A list of statements, the last of which is

the statement to be proven. Each statement in the list is either

• an axiom: a fundamental assumption about mathematics, or

part of definition of the object under study; or

• a previously established theorem; or

• follows from previous statements in the list by a valid rule of

inference
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Proof by Deduction

Example: Prove that the function f(x) = x2 is continuous at

x = 5.

Recall from one-variable calculus that f(x) = x2 is continuous

at x = 5 means

∀ε > 0 ∃δ > 0 s.t. |x − 5| < δ ⇒ |f(x) − f(5)| < ε

That is, “for every ε > 0 there exists a δ > 0 such that whenever

x is within δ of 5, f(x) is within ε of f(5).”

To prove the claim, we must systematically verify that this defi-

nition is satisfied.
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Proof. Let ε > 0 be given. Let

δ = min

{

1,
ε

11

}

> 0

Where did that come from ? Suppose |x − 5| < δ. Since δ ≤ 1,

4 < x < 6, so 9 < x + 5 < 11 and |x + 5| < 11. Then

|f(x) − f(5)| = |x2 − 25|

= |(x + 5)(x − 5)|

= |x + 5||x − 5|

< 11 · δ

≤ 11 ·
ε

11
= ε

Thus, we have shown that for every ε > 0, there exists δ > 0

such that |x − 5| < δ ⇒ |f(x) − f(5)| < ε, so f is continuous at

x = 5.



Proof by Contraposition

Recall some basics of logic.

¬P means “P is false.”

P ∧ Q means “P is true and Q is true.”

P ∨ Q means “P is true or Q is true (or possibly both).”

¬P ∧ Q means (¬P ) ∧ Q; ¬P ∨ Q means (¬P ) ∨ Q.

P ⇒ Q means “whenever P is satisfied, Q is also satisfied.”

Formally, P ⇒ Q is equivalent to ¬P ∨ Q.
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Proof by Contraposition

The contrapositive of the statement P ⇒ Q is the statement

¬Q ⇒ ¬P .

Theorem 1. P ⇒ Q is true if and only if ¬Q ⇒ ¬P is true.

Proof. Suppose P ⇒ Q is true. Then either P is false, or Q is true

(or possibly both). Therefore, either ¬P is true, or ¬Q is false

(or possibly both), so ¬(¬Q) ∨ (¬P ) is true, that is, ¬Q ⇒ ¬P is

true.

Conversely, suppose ¬Q ⇒ ¬P is true. Then either ¬Q is false,

or ¬P is true (or possibly both), so either Q is true, or P is false

(or possibly both), so ¬P ∨ Q is true, so P ⇒ Q is true.
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Proof by Induction

We illustrate with an example:

Theorem 2. For every n ∈ N0 = {0,1,2,3, . . .},

n
∑

k=1

k =
n(n + 1)

2

i.e. 1 + 2 + · · · + n = n(n+1)
2 .

Proof. Base step n = 0: LHS =
∑0

k=1 k = the empty sum =

0. RHS = 0·1
2 = 0

So the claim is true for n = 0.
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Induction step: Suppose

n
∑

k=1

k =
n(n + 1)

2
for some n ≥ 0

We must show that

n+1
∑

k=1

k =
(n + 1)((n + 1) + 1)

2



LHS =
n+1
∑

k=1

k

=
n

∑

k=1

k + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the Induction hypothesis

= (n + 1)

(

n

2
+ 1

)

=
(n + 1)(n + 2)

2

RHS =
(n + 1)((n + 1) + 1)

2

=
(n + 1)(n + 2)

2
= LHS

So by mathematical induction,
∑n

k=1 k = n(n+1)
2 for all n ∈ N0.



Proof by Contradiction

Assume the negation of what is claimed, and work toward a

contradiction.

Theorem 3. There is no rational number q such that q2 = 2.

Proof. Suppose q2 = 2 where q ∈ Q. Then we can write q = m
n

for some integers m, n ∈ Z. Moreover, we can assume that m

and n have no common factor; if they did, we could divide it

out.

2 = q2 =
m2

n2

Therefore, m2 = 2n2, so m2 is even.
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We claim that m is even. If not, then m is odd, so m = 2p + 1

for some p ∈ Z. Then

m2 = (2p + 1)2

= 4p2 + 4p + 1

= 2(2p2 + 2p) + 1

which is odd, contradiction. Therefore, m is even, so m = 2r for

some r ∈ Z.

4r2 = (2r)2

= m2

= 2n2

n2 = 2r2

So n2 is even, which implies (by the argument given above) that

n is even. Therefore, n = 2s for some s ∈ Z, so m and n have a



common factor, namely 2, contradiction. Therefore, there is no

rational number q such that q2 = 2.



Equivalence Relations

Definition 1. A binary relation R from X to Y is a subset R ⊆

X × Y . We write xRy if (x, y) ∈ R and “not xRy” if (x, y) 6∈ R.

R ⊆ X × X is a binary relation on X.

Example: Suppose f : X → Y is a function from X to Y . The

binary relation R ⊆ X × Y defined by

xRy ⇐⇒ f(x) = y

is exactly the graph of the function f . A function can be consid-

ered a binary relation R from X to Y such that for each x ∈ X

there exists exactly one y ∈ Y such that (x, y) ∈ R.

Example: Suppose X = {1,2,3} and R is the binary relation on

X given by R = {(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)}. This is

the binary relation “is weakly greater than,” or ≥.
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Equivalence Relations

Definition 2. A binary relation R on X is

(i) reflexive if ∀x ∈ X, xRx

(ii) symmetric if ∀x, y ∈ X,xRy ⇔ yRx

(iii) transitive if ∀x, y, z ∈ X, (xRy ∧ yRz) ⇒ xRz

Definition 3. A binary relation R on X is an equivalence relation

if it is reflexive, symmetric and transitive.
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Equivalence Relations
Definition 4. Given an equivalence relation R on X, write

[x] = {y ∈ X : xRy}

[x] is called the equivalence class containing x.

The set of equivalence classes is the quotient of X with respect

to R, denoted X/R.

Example: The binary relation ≥ on R is not an equivalence

relation because it is not symmetric.

Example: Let X = {a, b, c, d} and

R = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)}

R is an equivalence relation (why?) and the equivalence classes

of R are {a, b} and {c, d}. X/R = {{a, b}, {c, d}}
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Equivalence Relations

The equivalence classes of an equivalence relation form a parti-

tion of X: every element of X belongs to exactly one equivalence

class.

Theorem 4. Let R be an equivalence relation on X. Then ∀x ∈

X, x ∈ [x]. Given x, y ∈ X, either [x] = [y] or [x] ∩ [y] = ∅.

Proof. If x ∈ X, then xRx because R is reflexive, so x ∈ [x].

Suppose x, y ∈ X. If [x] ∩ [y] = ∅, we’re done. So suppose

[x]∩ [y] 6= ∅. We must show that [x] = [y], i.e. that the elements

of [x] are exactly the same as the elements of [y].
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Choose z ∈ [x] ∩ [y]. Then z ∈ [x], so xRz. By symmetry, zRx.

Also z ∈ [y], so yRz. By symmetry again, zRy. Now choose

w ∈ [x]. By definition, xRw. Since zRx and R is transitive, zRw.

By symmetry, wRz. Since zRy, wRy by transitivity again. By

symmetry, yRw, so w ∈ [y], which shows that [x] ⊆ [y].

Similarly, [y] ⊆ [x], so [x] = [y].



Cardinality

Definition 5. Two sets A, B are numerically equivalent ( or have

the same cardinality) if there is a bijection f : A → B, that is, a

function f : A → B that is 1-1 (a 6= a′ ⇒ f(a) 6= f(a′)), and onto

(∀b ∈ B ∃a ∈ A s.t. f(a) = b).

Example: A = {2,4,6, . . . ,50} is numerically equivalent to the

set {1,2, . . . ,25} under the function f(n) = 2n.

B = {1,4,9,16,25,36,49 . . .} = {n2 : n ∈ N} is numerically equiv-

alent to N.
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Cardinality

A set is either finite or infinite. A set is finite if it is numerically

equivalent to {1, . . . , n} for some n. A set that is not finite is

infinite.

In particular, A = {2,4,6, . . . ,50} is finite, B = {1,4,9,16,25,36,49 . . .}

is infinite.

A set is countable if it is numerically equivalent to the set of

natural numbers N = {1,2,3, . . .}. An infinite set that is not

countable is called uncountable.
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Cardinality

Example: The set of integers Z is countable.

Z = {0,1,−1,2,−2, . . .}

Define f : N → Z by

f(1) = 0

f(2) = 1

f(3) = −1
...

f(n) = (−1)n
⌊

n

2

⌋

where bxc is the greatest integer less than or equal to x. It is

straightforward to verify that f is one-to-one and onto.
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Cardinality

Theorem 5. The set of rational numbers Q is countable.

“Picture Proof”:

Q =

{

m

n
: m, n ∈ Z, n 6= 0

}

=

{

m

n
: m ∈ Z, n ∈ N

}
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m
0 1 −1 2 −2

1 0 → 1 −1 → 2 −2
↙ ↗ ↙ ↗

2 0 1
2 −1

2 1 −1

↓ ↗ ↙ ↗

n 3 0 1
3 −1

3
2
3 −2

3
↙ ↗

4 0 1
4 −1

4
1
2 −1

2
↓ ↗

5 0 1
5 −1

5
2
5 −2

5

Go back and forth on upward-sloping diagonals, omitting the



repeats:

f(1) = 0

f(2) = 1

f(3) =
1

2
f(4) = −1

...

f : N → Q, f is one-to-one and onto.


