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Introductions

Welcome

e 204

e Berkeley Economics

e UC Berkeley

o Berkeley

e California



o US...



Introductions

e Chris Shannon

e Farzad Pourbabaee

e \Walker Ray



About the Course

e Schedule: Lectures MTWThF 9:00 - 11:30 3108 Etchev-

erry Hall, often going over so don't schedule anything before
12:00

Sections: MTWThF 1:00 - 2:30 and 2:30 - 4:00, in 648
Evans (please try to split up evenly)

Office hours: Chris Shannon MTWThF 11:30 - 12:30 (end
of lecture 4+ 1 hour) here or 511 Evans, also by appt.

Farzad + Walker MTWThF 4:00 - 5:00 648 Evans

e Final Exam: Wednesday August 15, 9:00 am - 12:00 pm,
10 Evans Hall



e Prerequisites: Math 53-54 at Berkeley or equivalent
— 4 semesters college mathematics
— linear algebra
— multivariable calculus

— rigorous approach - theorems stated carefully and some
proofs given

— stream for engineers and scientists



Course requirements:

e problems sets: 6 total

(no late problem sets...no exceptions)

e exam N

e reading/working on your own

Grade: 10% problem sets (5 highest scores out of 6), 90% final
exam



Grading in First Year Economics Courses:

e median grade = B+ : solid command of material

e A and A- are very good grades, A+ for truly exceptional work

e B : ready to go on to further work...a B in 204 means you
are ready to go on to 201a/b, 202a/b, 240a/b

e B- : very marginal, but we won't make you take the class
again. B- in 204 means you will have a very hard time in
201a/b. Recommend you take Math 53 and 54 this year,
maybe Math 104, come back next year to retake 204 and
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take 201a/b. B- is a passing grade, but you must maintain
a B average

C: not passing. Definitely not ready for 201a/b, 202a/b,
240a/b. Take Math 53-54 this year, maybe Math 104, retake
204 next year

204 with at least a B- (or a waiver from 204 requirement) is
a strictly enforced prerequisite for enrollment in 201a/b

F: means you didn't take the final exam. Be sure to withdraw
if you don’t or can’t take the final.



Resources:

Book: de |la Fuente, Mathematical Methods and Models for
Economists

LLecture notes: for every lecture 4+ supplements for several topics

Be sure to read Corrections Handout with dIF

Seek out other references



T his class is not normal...

e lectures

e expectations

e classroom stuff



Goals for 204

e reduce heterogeneity of math backgrounds for students in
Econ graduate classes

e advance everyone's math skills and knowledge

e present some particular concepts and results used in first-year
economics courses 201a/b, 202a/b, 240a/b

e challenge everyone - so not everyone will understand every-
thing



develop basic math skills and knowledge needed to work as
a professional economist and read academic economics

develop ability to read and evaluate purported proofs...essential
for reading and working in all branches of economics - theo-
retical, empirical, experimental

develop ability to compose simple proofs...essential to work-
ing in all branches of economics - theoretical, empirical, ex-
perimental

cover selected material from real analysis and linear algebra
at moderate level of abstraction (considerably more advanced
and abstract than Math 53 + 54)



e Not to review Math 53 4 54. If you are weak on this material,
take Math 53-54 this year, and take 204 next year.



Learning by Doing

e to learn this sort of mathematics you need to do more than
just read the book and notes and listen to lectures

e active reading: work through each line, be sure you know
how to get from one line to the next

e active listening: follow each step as we work through argu-
ments in class

e working problems: the most valuable part of the class
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working in groups strongly encouraged...

but, always try to work through all of the problems before
talking to others

everyone must write up his/her own solutions

best test of understanding: can you explain it to others



Methods of Proof

What is a proof? The million dollar question...

Main Methods of Proof:

e deduction

e contraposition

e induction

e contradiction



We'll examine each of these in turn.



Proof by Deduction

Proof by Deduction: A list of statements, the last of which is
the statement to be proven. Each statement in the list is either

e an axiom: a fundamental assumption about mathematics, or
part of definition of the object under study; or

e a previously established theorem: or

e follows from previous statements in the list by a valid rule of
inference
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Proof by Deduction

Example: Prove that the function f(z) = z2 is continuous at
r =0b.

2

Recall from one-variable calculus that f(x) = x< is continuous

at x = 5 means

.t. |a:—5|<_5:>|f(a:) —fﬂfé‘

S A

That is, “for every € > 0O there exists a 4 > 0 such that whenever
x is within 6 of 5, f(x) is within € of f(5)."”

To prove the claim, we must systematically verify that this defi-

nition is satisfied.
13



Proof. Let € > 0 be given. Let
5:min{1,%}>0 = S T

Where did that come from 7 Suppose |z — 5| < §. Since § < 1,
4 <xr<6,s09<z+5<11and |[r+ 5| <11l. Then

f @) = f(5)] = |o° —25]
= [(z+5)(x—5)]
—gzole el
QD15 <
< 11.-20
= 11

€

Thus, we have shown that for every € > 0, there exists é > 0O

such that |x — 5| < §d = |f(x) — f(5)| < &, sO f is continuous at
xr =0b. [ ]



P O < el wexX <

Proof by Contraposition

Recall some basics of logic.

) jvck & 1\
> —P means "P is false.”
A . SI "™
PAQ means “P is true and Q is true.”

i
”D(

PV Q means “Pis true or @ is true (or possibly both).”
-PAQ means (=P)AQ; -PV Q means (=-P) V Q.
tL JM@LLe&“

P = (@ means “whenever P is satisfied, () is also satisfied.”

Formally, P = @ is equivalent to =P V Q.
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Proof by Contraposition

The contrapositive of the statement P = () is the statement
—Q = P.

Theorem 1. P = (@ is true if and only if =QQ = —~P is true.

Proof. Suppose P = (@ is true. Then either P is false, or () is true
(or possibly both). Therefore, either —P is true, or —=Q is false
(or possibly both), so —=(=Q) Vv (=P) is true, that is, =Q = =P is
true.

Conversely, suppose =) = —P is true. Then either =@ is false,
or =P is true (or possibly both), so either @ is true, or P is false
(or possibly both), so =PV Q is true, so P = (@ is true. [ ]
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Proof by Induction

Ser

We illustrate with an example:

Theorem 2. For every n € Ng =1{0,1,2,3,...}, ™N) e}

a4 D)
> k="
k=1 2

e 1424 4 n=nltl)

Proof. Base step n = 0: LHS = Y9_, k= the empty sum
0. RHS =%t =0

So the claim is true for n = 0.
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Induction step: Suppose

n

1
> k:n(n_l_ )forsomenzo
k=1 2

We must show that

n—+1
(n+1)((n+1)+1)
k =
Z 2




LHS

(n+1)(n+2)

2

e — DD+

2
_ (n+1)(n+ 2) — LHS
2

So by mathematical induction, »}_; k = ”(”5"1) for all n € Np.
[ ]
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Proof by Contradiction

Assume the negation of what is claimed, and work toward a
contradiction.

Theorem 3. There is no rational number q such that ¢° =

WS J_C)é(;_o el e

o

out.

Therefore, m?2 = 2n2, so m2 is even.
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We claim that m is even. If not, then m is odd, so m=2p+1
for some p € Z. Then

m? = (2p+1)°

4p° + 4p+ 1

2(2p° +2p) +1

which is odd, contradiction. Therefore, m is even, so m = 2r for
some r € Z.

4r° = (2r)?
m2
2n2
n? = 2r2
So n? is even, which implies (by the argument given above) that

n is even. Therefore, n = 2s for some s € Z, so m and n have a



common factor, namely 2, contradiction. Therefore, there is no
rational number ¢ such that ¢ = 2. []




Equivalence Relations

Definition 1. A binary relation R from X to Y is a subset R C
X xY. We write xRy if (x,y) € R and “'not xRy" if (z,y) € R.
R C X x X is a binary relation on X. ‘—(, &,y

Example: Suppose f: X — Y is a function from X to Y. The
binary relation R C X x Y defined by

xRy <— f(x) =y

is exactly the graph of the function f. A function can be consid-
ered a binary relation R from X to Y such that for each z € X
there exists exactly one y € Y such that (z,y) € R.

Example: Suppose X = {1,2,3} and R is the binary relation on
X given by R = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)}. This is
the binary relation ‘is weakly greater than,” or >

3 ¢ 18
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\ * ®

U

e
]
bv\w
vV o 2



Equivalence Relations

Definition 2. A binary relation R on X is
(i) reflexive ifVx € X, zRx
(ii) symmetric ifVx,y € X, 2Ry < yRx
(iii) transitive if Ve,y,z € X, (xRy NyRz) = xRz

Definition 3. A binary relation R on X is an equivalence relation
if it is reflexive, symmetric and transitive.

19



Equivalence Relations
Definition 4. Given an equivalence relation R on X, write
] = {y € X : xRy}
[x] is called the equivalence class containing .

T he set of equivalence classes is the quotient of X with respect
to R, denoted X/R. " K wod &

Example: The binary relation > on R is not an equivalence
relation because it is not symmetric.

Example: Let X = {a,b,c,d} and
R ={(a,a),(a,b),(b,a),(b,b),(c,c),(c,d),(d,c),(d,d)}

R is an equivalence relation (why?) and the equivalence classes
of R are {a,b} and {c,d}. X/R = {{a,b},{c,d}}

Leny: lals] Lel: e dl 20
tel> te bl T&d= e dl



Equivalence Relations

The equivalence classes of an equivalence relation form a parti-
tion of X: every element of X belongs to exactly one equivalence
class.

Theorem 4. Let R be an equivalence relation on X. Then Vx &
X,z € [z]. Given z,y € X, either [z] = [y] or [z] N [y] = 0.

Proof. If x € X, then xRx because R is reflexive, so x € [z].

Suppose z,y € X. If [z] n[y] = 0, we're done. So suppose
[z] N [y] &= 0. We must show that [z] = [y], i.e. that the elements
of [z] are exactly the same as the elements of [y].

21



Choose z € [z] N [y]. Then z € [z], sO zRz. By symmetry, zRz.
Also z € [y], so yRz. By symmetry again, zRy. Now choose
w € [x]. By definition, zRw. Since zRx and R is transitive, zRw.
By symmetry, wRz. Since zRy, wRy by transitivity again. By
symmetry, yRw, SO w € [y], which shows that [z] C [y].

Similarly, [y] C [z], so [z] = [y]. [ ]



Cardinality

Definition 5. Two sets A, B are numerically equivalent ( or have
the same cardinality) if there is a bijection f : A — B, that is, a
function f: A — B that is 1-1 (a # o' = f(a) # f(a')), and onto
(Vbe B daec A s.t. f(a) =0).

Example: A = {2,4,6,...,50} is numerically equivalent to the
set {1,2,...,25} under the function f(n) = 2n.

B =1{1,4,9,16,25,36,49...} = {n?: n € N} is numerically equiv-

alent to N. o

SRS & CCan=
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Cardinality

A set is either finite or infinite. A set is finite if it is numerically

equivalent to {1,...,n} for some n, A set that is not finite is
infinite. “W

In particular, A = {2,4,6,...,50} is finite, B = {1,4,9,16,25,36,49...

is infinite.

A set is countable if it is numerically equivalent to the set of
natural numbers N = {1,2,3,...}. An infinite set that is not
countable is called uncountable.
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Cardinality

Example: The set of integers Z is countable.
Z=1{0,1,-1,2,—2 ...}
Define f : N — Z by

F1) =

F2) = 1

F3) = -1
e ) = (0" |2

where |x]| is the greatest integer less than or equal to z. It is
straightforward to verify that f is one-to-one and onto.
24



Cardinality

Theorem 5. The set of rational numbers Q is countable.

“Picture Proof’”:
Q = {T:m,nez,n#o}

{—:mEZ,nEN}
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repeats:

f(1) =0
f(2) = i
f(3) = 5
f(4) = -

f:N—Q, f is one-to-one and onto.



