Announcements: type in #3 PS2
torrection pested
PS 2 due Tues
in lecture

1

Econ 204 2018

Lecture 6

Outline

- 1. Open Covers
- 2. Compactness
- 3. Sequential Compactness
- 4. Totally Bounded Sets
- 5. Heine-Borel Theorem
- 6. Extreme Value Theorem

Open Covers

Definition 1. A collection of sets

 $\mathcal{U}=\{U_\lambda:\lambda\in\Lambda\}$ in a metric space (X,d) is an open cover of A if U_λ is open for all $\lambda\in\Lambda$ and

 $\cup_{\lambda\in\Lambda}U_{\lambda}\supseteq A$

Notice that Λ may be finite, countably infinite, or uncountable.

Compactness

Definition 2. A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other words, if $\{U_{\lambda} : \lambda \in \Lambda\}$ is an open cover of A, there exist $n \in \mathbb{N}$ and $\lambda_1, \dots, \lambda_n \in \Lambda$ such that

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

This definition does **not** say "A has a finite open cover" (fortunately, since this is vacuous...).

Instead for **any** arbitrary open cover you must specify a finite subcover of this **given** open cover.

Compactness

Example: (0,1] is not compact in E^1 . (R with standard metric)

To see this, let

Then

$$\cup_{m \in \mathbb{N}} U_m = (0, 2) \supset (0, 1]$$

$$\Rightarrow \mathcal{U} \text{ is an open cover of } (0, 1]$$

Given any finite subset $\{U_{m_1}, \ldots, U_{m_n}\}$ of \mathcal{U} , let $m = \max\{m_1, \ldots, m_n\}$ 7 0

Then

$$\bigcup_{i=1}^{n} U_{m_i} = U_m = \left(\frac{1}{m}, 2\right) \not\supseteq (0, 1]$$

So (0,1] is not compact.

What about [0,1]? This argument doesn't work...

Compactness

Example: $[0,\infty)$ is closed but not compact. (in \mathbb{R} with stand and metric)

To see that $[0,\infty)$ is not compact, let

 $\mathcal{U} = \{U_m = (-1, m) : m \in \mathbb{N}\} \qquad \bigcup (\dots, m) : (\dots, m) \in \mathbb{N}\}$ Given any finite subset $\underbrace{U_{m_1}, \dots, U_{m_n}}_{\{U_{m_1}, \dots, U_{m_n}\}} \qquad \underbrace{\bigcup (\dots, m)}_{m \in \mathbb{N}} : (\dots, m) : (\dots, m) \in \mathbb{N}\}$

of \mathcal{U} , let

$$\circ$$
 < $m = \max\{m_1, \ldots, m_n\}$ < \backsim

Then

$$U_{m_1}\cup\cdots\cup U_{m_n}=(-1,m)\not\supseteq [0,\infty)$$

7

R standard metric
A = 2a,,..., and finite
A compact:
Let
$$\mathcal{M} = 2\mathcal{M}_{\lambda}$$
: Let \mathcal{D} be an open
cover of \mathcal{A} .
So \mathcal{M}_{λ} open \mathcal{H} Let and
 $2a_{1,...,an} = \mathcal{A} \subseteq \mathcal{U} \mathcal{M}_{\lambda}$
 $\Rightarrow \mathcal{H}_{\mathcal{U}} \equiv 1,...,n \quad \mathcal{H}_{\mathcal{U}} \in \mathcal{N}$ s.t.
 $a_{\mathcal{U}} \in \mathcal{M}_{\lambda}$:
 $\Rightarrow 2a_{1,...,an} \geq \mathcal{A} \subseteq \mathcal{M}_{\lambda} \cup \mathcal{M}_{\lambda} \cup ... \cup \mathcal{M}_{\lambda}$

Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact metric space (X,d) is compact.

Proof. Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of A. In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do this:

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A) \quad \longleftarrow \text{ open since } A \text{ dosed}$$

$$\Lambda' = \Lambda \cup \{\lambda_0\}, \ U_{\lambda_0} = X \setminus A$$

We choose the first path, and let

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A) \quad \forall \lambda \in \land$$

Since A is closed, $X \setminus A$ is open; since U_{λ} is open, so is U'_{λ} .

Then $x \in X \Rightarrow x \in A$ or $x \in X \setminus A$. If $x \in A$, $\exists \lambda \in \Lambda$ s.t. $x \in U_{\lambda} \subseteq U_{\lambda}'$. If instead $x \in X \setminus A$, then $\forall \lambda \in \Lambda$, $x \in U_{\lambda}'$. Therefore, $X \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}'$, so $\{U_{\lambda}' : \lambda \in \Lambda\}$ is an open cover of X.

Since X is compact,

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda \text{ s.t. } X \subseteq U'_{\lambda_1} \cup \dots \cup U'_{\lambda_n}$$

Then

$$\begin{aligned} a \in A &\Rightarrow a \in X \\ \Rightarrow a \in U'_{\lambda_i} \text{ for some } i \\ \Rightarrow a \in U_{\lambda_i} \cup (X \setminus A) \\ \Rightarrow a \in U_{\lambda_i} \cup (Q \setminus A) \end{aligned}$$

SO

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

Thus A is compact.

Compactness

closed \Rightarrow compact, but the converse is true: m any metric space **Theorem 2** (Thm. 8.15). If A is a compact subset of the metric space (X,d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed. Then $X \setminus A$ is not open, so we can find a point $x \in X \setminus A$ such that, for every $\varepsilon > 0$, $A \cap B_{\varepsilon}(x) \neq \emptyset$, and hence $A \cap B_{\varepsilon}[x] \neq \emptyset$. For $n \in \mathbb{N}$, let

$$U_n = X \setminus B_{\frac{1}{n}}[x]$$

10

 $\forall r A \cap B_{1}[x] \neq \emptyset$

Each U_n is open, and

$$\cup_{n\in\mathbb{N}}U_n=X\setminus\{x\}\supseteq A$$

since $x \notin A$. Therefore, $\{U_n : n \in \mathbb{N}\}$ is an open cover for A. Since A is compact, there is a finite subcover $\{U_{n_1}, \ldots, U_{n_k}\}$. Let $n = \max\{n_1, \ldots, n_k\}$. Then

$$U_n = X \setminus B_{\frac{1}{n}}[x] = U_{nj}$$

$$\supseteq X \setminus B_{\frac{1}{n_j}}[x] \ (j = 1, \dots, k)$$

$$\longrightarrow U_n \supseteq \cup_{j=1}^k U_{n_j}$$

$$\supseteq A$$

But $A \cap B_{\frac{1}{n}}[x] \neq \emptyset$, so $A \not\subseteq X \setminus B_{\frac{1}{n}}[x] = U_n$, a contradiction which proves that A is closed.

Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially compact if every sequence of elements of A contains a convergent subsequence whose limit lies in A.

Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d) is compact if and only if it is sequentially compact.

Proof. Suppose A is compact. We will show that A is sequentially compact.

If not, we can find a sequence $\{x_n\}$ of elements of A such that no subsequence converges to **any** element of A. Recall that a is a cluster point of the sequence $\{x_n\}$ means that

 $\forall \varepsilon > 0 \ \{n : x_n \in B_{\varepsilon}(a)\}$ is infinite

and this is equivalent to the statement that there is a subsequence $\{x_{n_k}\}$ converging to a. Thus, **no** element $a \in A$ can be a cluster point for $\{x_n\}$, and hence

$$\forall a \in A \; \exists \varepsilon_a > 0 \text{ s.t. } \{n : x_n \in B_{\varepsilon_a}(a)\} \text{ is finite}$$
 (1)

Then

$$\{B_{\varepsilon_a}(a) : a \in A\}$$

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact, there is a finite subcover

$$\left\{B_{\varepsilon_{a_1}}(a_1),\ldots,B_{\varepsilon_{a_m}}(a_m)\right\} \qquad A \subseteq \mathbb{B}_{\varepsilon_{a_1}}(a_1) \cup \cdots \cup \mathbb{B}_{\varepsilon_{a_m}}(a_m)$$

Then $2x_{\lambda} \leq A =$

$$\mathbf{N} = \{n : x_n \in A\} - \underline{\varsigma} \\ \subseteq \{n : x_n \in (B_{\varepsilon_{a_1}}(a_1) \cup \dots \cup B_{\varepsilon_{a_m}}(a_m))\} \\ = \{n : x_n \in B_{\varepsilon_{a_1}}(a_1)\} \cup \dots \cup \{n : x_n \in B_{\varepsilon_{a_m}}(a_m)\}$$

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite, a contradiction which proves that A is sequentially compact. For the converse, see de la Fuente.

Definition 4. A set A in a metric space (X, d) is totally bounded if, for every $\varepsilon > 0$,

 $\exists x_1, \ldots, x_n \in A \text{ s.t. } A \subseteq \cup_{i=1}^n B_{\varepsilon}(x_i)$

Example: Take A = [0,1] with the Euclidean metric. Given $\varepsilon > 0$, let $n > \frac{1}{\varepsilon}$. Then we may take $\Rightarrow \varepsilon > \frac{1}{\varepsilon}$. Then we may take $x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \dots, x_{n-1} = \frac{n-1}{n}$ Then $[0,1] \subset \bigcup_{k=1}^{n-1} B_{\varepsilon}(\frac{k}{n})$.

Example: Consider X = [0, 1] with the discrete metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

X is not totally bounded. To see this, take $\varepsilon = \frac{1}{2}$. Then for any $x, B_{\varepsilon}(x) = \{x\}$, so given any finite set x_1, \ldots, x_n ,

$$\bigcup_{i=1}^{n} B_{\varepsilon}(x_i) = \{x_1, \dots, x_n\} \not\supseteq [0, 1]$$

However, X is bounded because $X = B_2(0)$.

Note that any totally bounded set in a metric space (X,d) is also bounded. To see this, let $A \subset X$ be totally bounded. Then $\exists x_1, \ldots, x_n \in A$ such that $A \subset B_1(x_1) \cup \cdots \cup B_1(x_n)$. Let

$$M = 1 + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)$$

Then $M < \infty$. Now fix $a \in A$. We claim $d(a, x_1) < M$. To see this, notice that there is some $n_a \in \{1, \ldots, n\}$ for which $a \in B_1(x_{n_a})$. Then

$$d(a, x_1) \leq d(a, x_{n_a}) + \sum_{k=1}^{n-1} d(x_k, x_{k+1})$$

$$< 1 + \sum_{k=1}^{n-1} d(x_k, x_{k+1})$$

$$= M$$

Remark 4. Every compact subset of a metric space is totally bounded:

Fix ε and consider the open cover

 $\mathcal{U}_{\varepsilon} = \{B_{\varepsilon}(a) : a \in A\}$

If A is compact, then every open cover of A has a finite subcover; in particular, $\mathcal{U}_{\varepsilon}$ must have a finite subcover, but this just says that A is totally bounded.

 $=) \exists a_{1,-}, a_{n} \in A \quad s \leftarrow - \\ A \subseteq B_{\varepsilon}(a_{1}) \cup \cdots \cup B_{\varepsilon}(a_{n}) \\ \end{bmatrix}$

Converce false: e.g. (0,1) is totally bounded but not compact 18

Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). Let A be a subset of a metric space (X,d). Then A is compact if and only if it is complete and totally bounded.

- \implies *Proof.* Here is a sketch of the proof; see de la Fuente for details. Compact implies totally bounded (Remark 4). Suppose $\{x_n\}$ is a Cauchy sequence in A. Since A is compact, A is sequentially compact, hence $\{x_n\}$ has a convergent subsequence $x_{n_k} \rightarrow a \in A$. Since $\{x_n\}$ is Cauchy, $x_n \rightarrow a$ (why?), so A is complete.
- Conversely, suppose A is complete and totally bounded. Let $\{x_n\}$ be a sequence in A. Because A is totally bounded, we can extract a Cauchy subsequence $\{x_{n_k}\}$ (why?). Because A is complete, $x_{n_k} \to a$ for some $a \in A$, which shows that A is sequentially compact and hence compact.

Compact \iff Closed and Totally Bounded

Putting these together: with results from lecture 5:

Corollary 1. Let A be a subset of a complete metric space (X, d). Then A is compact if and only if A is closed and totally bounded.

- A compact \Rightarrow A complete and totally bounded
 - \Rightarrow A closed and totally bounded
- A closed and totally bounded
 - \Rightarrow A complete and totally bounded
 - \Rightarrow A compact

Example: [0,1] is compact in \mathbf{E}^1 . (R with standard metric) \mathbf{E}' is complete, [0,1] is closed and totally bounded $\rightarrow \quad [0,1]$ is compact

Note: compact \Rightarrow closed and bounded, but converse need not be true.

E.g. [0,1] with the discrete metric. [0,1] with discrete metric is closed and bounded but not totally bounded, so not compact

Heine-Borel Theorem - E^1

Theorem 6 (Thm. 8.19, Heine-Borel). If $A \subseteq E^1$, then A is compact if and only if A is closed and bounded.

 \leftarrow :*Proof.* Let A be a closed, bounded subset of \mathbb{R} . Then $A \subseteq [a, b]$ for some interval [a, b]. Let $\{x_n\}$ be a sequence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ contains a convergent subsequence with limit $x \in \mathbb{R}$. Since [a, b] is closed, $x \in [a, b]$. Thus, we have shown that [a, b] is sequentially compact, hence compact. A is a closed subset of [a, b], hence A is compact.

Conversely, if A is compact, A is closed and bounded.

Heine-Borel Theorem - \mathbf{E}^n

Theorem 7 (Thm. 8.20, Heine-Borel). If $A \subseteq E^n$, then A is compact if and only if A is closed and bounded.

Proof. See de la Fuente.

Example: The closed interval

 $[a,b] = \{x \in \mathbf{R}^n : a_i \le x_i \le b_i \text{ for each } i = 1, \dots, n\}$

is compact in \mathbf{E}^n for any $a, b \in \mathbf{R}^n$.

Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,ρ) be metric spaces. If $f: X \to Y$ is continuous and C is a compact subset of (X,d), then f(C) is compact in (Y,ρ) .

Proof. There is a proof in de la Fuente using sequential compactness. Here we give an alternative proof using directly the open cover definition of compactness.

Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of f(C). For each point $c \in C$, $f(c) \in f(C)$ so $f(c) \in U_{\lambda_c}$ for some $\lambda_c \in \Lambda$, that is, $c \in f^{-1}(U_{\lambda_c})$. Thus the collection $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is a cover of C; in addition, since f is continuous, each set $f^{-1}(U_{\lambda})$ is

open in C, so $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is an open cover of C. Since C is compact, there is a finite subcover

$$\left\{f^{-1}\left(U_{\lambda_{1}}\right),\ldots,f^{-1}\left(U_{\lambda_{n}}\right)\right\}$$

of C. Given $x \in f(C)$, there exists $c \in C$ such that f(c) = x, and $c \in f^{-1}(U_{\lambda_i})$ for some i, so $x \in U_{\lambda_i}$. Thus, $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is a finite subcover of f(C), so f(C) is compact.

Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a compact set in a metric space (X,d), and suppose $f : C \to \mathbf{R}$ is continuous. Then f is bounded on C and attains its minimum and maximum on C.

Proof. f(C) is compact by Theorem 8.21, hence closed and bounded. Let $M = \sup f(C)$; $M < \infty$. Then $\forall m > 0$ there exists $y_m \in f(C)$ such that

$$M - \frac{1}{m} \le y_m \le M$$

So $y_m \to M$ and $\{y_m\} \subseteq f(C)$. Since f(C) is closed, $M \in f(C)$, i.e. there exists $c \in C$ such that $f(c) = M = \sup f(C)$, so f attains its maximum at c. The proof for the minimum is similar.

Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X, d) and (Y, ρ) be metric spaces, C a compact subset of X, and $f : C \to Y$ continuous. Then f is uniformly continuous on C.

Proof. Fix $\varepsilon > 0$. We ignore X and consider f as defined on the metric space (C, d). Given $c \in C$, find $\delta(c) > 0$ such that

$$x \in C, \ d(x,c) < 2\delta(c) \Rightarrow \rho(f(x),f(c)) < \frac{\varepsilon}{2}$$

Let

$$U_c = B_{\delta(c)}(c)$$

Then

$$\{U_c : c \in C\}$$

is an open cover of C. Since C is compact, there is a finite subcover

$$\{U_{c_1},\ldots,U_{c_n}\} \qquad C \subseteq \bigcup_{i>i} U_{c_i}$$

Let

$$\delta = \min\{\delta(c_1), \ldots, \delta(c_n)\} > \bigcirc$$

Given $x, y \in C$ with $d(x, y) < \delta$, note that $x \in U_{c_i}$ for some $i \in \{1, \ldots, n\}$, so $d(x, c_i) < \delta(c_i)$.

$$d(y,c_i) \leq d(y,x) + d(x,c_i)$$

$$< \delta + \delta(c_i)$$

$$\leq \delta(c_i) + \delta(c_i)$$

$$= 2\delta(c_i)$$

SO

$$\rho(f(x), f(y)) \leq \rho(f(x), f(c_i)) + \rho(f(c_i), f(y))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

which proves that f is uniformly continuous.