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Lecture 8
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Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear
combination of xz1,...,xzn € X IS a vector of the form

n
y= > oz; Wwhere ay,...,an € F

i=1
a; IS the coefficient of x; in the linear combination.

If' V C X, the span of V, denoted spanV, is the set of all linear
combinations of elements of V.

A set V C X spans X if spanV = X.



Linear Dependence and Independence

Definition 2. A set V C X is linearly dependent if there exist
v1,...,op €V and aq,...,an € F not all zero such that

n
Z OV, — 0
1=1

A setV C X jslinearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

n
Zaivizo, v, €V Vi=0a; =0 W1
=1



Bases

Definition 3. A Hamel basis (often just called a basis) of a vector
space X is a linearly independent set of vectors in X that spans
X.

Example: {(1,0),(0,1)} is a basis for R? (this is the standard

basis).
< f,e(;\?\_ .
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Example, cont: {(1,1),(—1,1)} is another basis for R?:

Suppose (x,y) a(l,1)+ 38(—1,1) for some o, 3 € R

r = a—p S Ca-p, axf)
y = a+p
r+y = 2«
= o = Tty
2
y—x = 20
_ y=z
=0 = _2|_
— Ty I L_

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans
R2. If (z,y) = (0,0),



so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-

dependent. Since it is linearly independent and spans RQ, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it
does not span R3. .5 UAU%\QRB‘ v 2ED g wst

spen (Reh=m ooy
Example: {(1,0),(0,1),(1,1)} is not a basis for R2.

SO the set is not linearly independent.



Bases

Theorem 1 (Thm. 1.2"). Let V be a Hamel basis for X. Then
every vector x € X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients
nonzero).*

Proof. Let x € X. Since V spans X, we can write

where S1 is finite, as € F', as # 0, and vs € V for each s € 57.
Now, suppose

— - - - — —_ — —_—

*The unique representation of 0 is 0 = > icp Qibi. a



where S5 is finite, Bs € F', Bs # 0, and vs € V for each s € S5.
Let S = 57 USo, and define

as =0 for se& Sy\ Sy
Bs =0 for se&S1\ 5

Then
O = z—=x

= Z AsVs — Z Bsvs
s€ES sESH

— Z AsVs — Z Bsvs
SES SES

— Z (as — Bs)vs
seS

Since V is linearly independent, we must have as — 8s = 0, sO
as = O, for all s € S.

seES1asFF0&5 080 s€ 55



SO S1 = 55 and as = (s for s € S = S5, so the representation is
unique. [ ]



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice. [ ]



Bases

A closely related result, from which you can derive the previous

result, shows that any linearly independent set V in a vector
space X can be extended to a basis of X.

Theorem 3. If X is a vector space andV C X is linearly indepen-

dent, then there exists a linearly independent set W C X such
that

VCCWCspanW =X



Bases

Theorem 4. Any two Hamel bases of a vector space X have the
same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {v), : A € A} and
W = {wy : v € '} are Hamel bases of X. Remove one vector
Vg from V, so that it no longer spans (if it did still span, then
vy, Would be a linear combination of other elements of V', and
V' would not be linearly independent). If wy € span(V \ {vy,})
for every v € I', then since W spans, V \ {v,,} would also span,
contradiction. Thus, we can choose g € I' such that

W~y € SPan <V \ {”/\o})



p

L\
Because w,, € spanV, we can write
n
Wyg = D ),
i=0

where aq, the coefficient of Vg is not zero (if it were, then we

would have wy, € span <V \ {v,\o})). Since ag #= 0, we can solve
for vy, as a linear combination of wy, and vy,,...,vy,, SO

span <<V \ {U)\O}> U {w%}) 5 N\,
D spanV = seon ((\f\ WA ) ‘”\\chﬁ—\)

= X
SO
((V\ {ag}) U{wro})
spans X. From the fact that w,, € span <V\{U>\O}) one can



show that

((V\ {vag}) U{wyo})
is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V with an element of W (when
V is uncountable, this is done by a process called transfinite
induction). At the end, we obtain a bijection from V to W, so
that V and W are numerically equivalent. [ ]



Dimension

Definition 4. The dimension of a vector space X, denoted dim X,
is the cardinality of any basis of X.

For V C X, |V| denotes the cardinality of the set V.

® T..,S‘" &%WX'—* v~ -S;-c.f Sava r\@@)
X NS gi,:\l( ~ &;W\tr\g\“g.,\ca.\ _

- o - AN ;\;V\ab\
@(\\e}fu};&‘l) X < i&ﬂh\,&.{/fa\» SANNN S DR
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Dimension

Example: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

E——_, Wiae K™y W\a;k*r‘\%

{EZ]].SZS’ITL,].S]STL} N

where
AR () {1 if k=1 and (= j

i )Y -
o L 0 otherwise.

The dimension of the vector space of m X n matrices is mn.

Q\' o= Q ~-- =~
Y ~. = (S \ ©c ~-— O ~-— ©
th \ A “\‘\ : ~_ \
\’ “ — - \‘.
C S = VT T a)
N ! o ~_ \ 11
\ r s LY —
\ 5 \
VAN T O s = o



Dimension and Dependence

Theorem 5 (Thm. 1.4). SupposedimX =n e N. IfV C X and
V| >n, then V is linearly dependent.

A nc"\’J J e L;uz_su\ﬁ V"\A*"“f‘ & ) Qs Co

iherded Ao o \oasis W &k X) o
oW = ~ < \N\ £\

C‘_\,,\;\m_a\;-c_:!r;m‘
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Dimension and Dependence

Theorem 6 (Thm. 1.5"). Suppose dimX =ne N, V C X, and
V| =n.

e ITV is linearly independent, then V spans X, soV is a Hamel
basis.

e ITV spans X, then V is linearly independent, %) V is a Hamel
X

basis. |
©) O‘(\J\ML:JQQ.SLJ M*‘\‘-&ﬁ& \) o o sas\& U\)’\ WX J % \)\))
se Lo\ > \,\J\ = W
N C— \C:\Clc::-’\-‘ ‘
" “& \)L CJ o \mesws Lo X o-d
@ 0‘\/\/\1’_{‘@\%, (o os = ) 13

9t NLERN
c&/\'\'*rc—oﬁ"l(/s(;or\"



Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field
F. WesayT : X — Y is a linear transformation if

T(a1x1 + asxo) = T (x1) + axT(z2) Vi, z0 € X,a1,0p € F
~—

\ & \( &"\QS\ x Ny kQ;_ \_6'”_/ OL‘HLT(_,X\J\‘ \66-"&_’ NQ.T("K‘B\
\\_/’\/;\J :
we N
Let L(X,Y) denote the set of all linear transformations from X

to Y.
A\ ks madivehy o
AN vermas VT
C T ()= AV () NaeT N xeX

e T\ Q\L\ + X-'a\ = _Y‘(xt\ < T(X-é_\ -3 > X:L(:X
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debiae v L LOCN LGN\ > TN

Linear Transformations

Theorem 7. L(X,Y) is a vector space over F'.

Proof. First, define linear combinations in L(X,Y) as follows.
For T1,1T> € L(X,Y) and «,3 € F, define oIy + 815 by

(T + B12)(z) = oT1(z) + BT2(x)
We need to show that aT7 4+ 871> € L(X,Y).

(aTy + BT%)(yx1 + d72)

= oall1(yxq —|— (5:1:2) + 5% (BefiAdon)d
= a(vTy(21) +5T1(5L‘2) + B8 (vIo(z1) + 6To(z0)) (T . To Mo
= v (aT1(@) + BT2@))) + 6 (aT1 (@) + BT2(23))  (covest ormd)

v (aT1 + BTo) (z1) + 6 (aT1 + B1%) (z2) (Sels ARon, S
o

15



so o1y + B1» € L(X,Y).

The rest of the proof involves straightforward checking of the
vector space axioms. [ ]



Compositions of Linear Transformations

Given R € L(X,Y) and S € L(Y,Z), SoR : X — Z. We will
show that SoR € L(X,Z), that is, the composition of two linear
transformations is linear.

(S o R)(axry + Bxo)

S(R(az1 + Br2)) (aeke & S5
= S(aR(z1) + BR(zp)) By

= aS(R(z1)) 4+ BS(R(z2)) LS tres?)
a(SoR)(z1) + B(So R)(72) (as & &)

so SoRe L(X,Z).

16



Kernel and Rank
Definition 6. Let T € L(X,Y).

e Theimage of T isImT =T(X) <™
C o~ e R s o J e g\_»\qﬁ.\amcﬁ- o \{

e The kernel of T iskerT ={x € X : T(xz) = 0} LN Spacs A1)

e Therank of T is RankT = dim(ImT)

=K X & o e s SR WK W e uedasrm Swbsprce
C____b ;&w\)uﬁé_e \J\_) ) %‘*\Fe— F}
SVURES f;w.;@- W

C\.r\_) o~ ﬂw ,\g X s e geker Sﬁ“‘-‘?— ow< U
o S + . —Q*/‘Q,M-\ X \

)

Q_L@)J\"
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Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T € L(X,Y ). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dimX =dimkerT 4+ RankT’
AoASy o U
gkﬂk(d"“ K o S\ow T L R éqf_g}_f oul < \)c.c—\c-cr QWSDQ@C:,CJQ%

o —Yode 1\5\\_,,\5\,_\5 o Masis for oS \

- Q_)\;}(Q_‘J\& -LO —L\J\.-’-)\JV__J\’\-)\),,.)\JQ‘,.\XQ'—\:’“'S'“S—L\r >L

~ | S VY
AV YV 1\ (uo\\) ---\_—<Q"'—°.;)‘S & o Dasg “K:\i'_,
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Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

=) Proof. Suppose T' is one-to-one. Suppose z € ker1. Then
T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.
Since T is one-to-one, x = 0, so kerT = {0}.

<=.Conversely, suppose that kerT = {0}. Suppose T(x1) = T(z>2).
Then

T(x1) — T (x2)
0

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

T(x1 — x2)

19



Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that

x Ve e X Sg\':‘:é‘x
y vyeyY To= i

S(T(x))
T(S(y))

M(
Denote S by T 1.

Note that T is invertible if and only if it is one-to-one and onto.
This is just the condition for the existence of an inverse function.
The linearity of the inverse follows from the linearity of T.§

(e with show K )

20



Invertible Linear Transformations

Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

TW) = v T 1(v) =
T(w) = w T Hw) = o
Then J »
T Yav+ Bw) = T 1 <ozT(v’) + 5Ttw’)) (safe~Ben)
= 77 (T(a' + ') (T Wrear)
= av 4+ v’ Cdefn & T7Y)

oT Y (v) 4+ BT (w) (SeSon &% 'y w0t

21



so 71
e L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two vector spaces
over the same field F, and let V. = {vy : A € A} be a basis

for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V, that is:

1. Given any set {yy : A€ N} CY,dT € L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22



Proof. 1. If x € X, x has a unique representation of the form

n
L = Zaﬂ))\i 057;#07;:1,...,72,
1=1

(Recall that if £ = 0, then n = 0.) Define
n ,/YL\‘*") bg TN =9s N

T(z) = ) oy by Sefw
i=1
Then T'(z) € Y. The verification that T is linear is left as an

exercise.

23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

S(ZIZ) = S (Z O‘iv)\Z)

1=1
= i ;S (vAi) (S Gn=es)
1=1
= 3 T (uy) S a8 T aguee

so S="1T.



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and
onto).

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If

e .



y €Y, then there exists x € X such that
(__—‘: s D"\“le\

y = T(z)
n
= T (Z OQ\Z.U)\Z>
1=1
n \
= Y o T <u>\) (Uomeorikay S )
— -
Zn
= Q) V), Caddn & V1LY
1=1

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

m
0 = Zﬁz?))\z
i=1
m
= > BT (uy,) ((deln o )
i=1
m
= .;&% (T \oear)
1=
Since T is one-to-one, kerT = {0}, so
m
> Biuy, =
i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-

early independent. Thus, V is a basis of Y since U and V are
numerically equivalent, dimX = dimY.

(N W

VAU AV



=" Now suppose dimX =dimY. Let

U={uy:A€A}and V = {vy: XA €A}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

T

S rti\_]—\_o\)u& \j{__;__\—w\.‘k
N



T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

DR R W 0O = T(CC)
n
= T Z QU ),
i=1
n ‘ .
= Z ;1 (uAZ) (T \~nean)
=1
n
= Z QU (Tl =\ NN
=1
= a1 = --=ap =0 since V is a basis
= =0 = _?—ﬁ'{\,u‘%;
= kerT = {0}
= T is one-to-one



T s oS
#__—1_1:'-76 Y, write y = 2?7’:1 ﬁﬂ))\i. Let
m
r= ) [uy
1=1
Then

T(zx) = T (Z @;UAZ-)
= i BiT (uy;) (T Wneary

:y_

so T is onto, so T is an isomorphism and X,Y are isomorphic. [



